

NABU's Follow-up Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia

© The Nature and Biodiversity Conservation Union (NABU), 2020

Naturschutzbund Deutschland (NABU) e.V. The Nature and Biodiversity Conservation Union Charitéstraße 3 10117 Berlin, Germany www.en.NABU.de

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of NABU.

This assessment has been part of the NABU project 'Community Action in Biodiversity and Forest Conservation and Adaptation

to Climate Change in the Wild Coffee Forests (CAFA)'. This project

has been supported by the German Federal Ministry for Economic

Cooperation and Development (BMZ). The follow-up biodiversity

Revised by:

Svane Bender, Manja Graham, Stefanie Brandes, Ellen Externbrink

Selected maps have been produced and amended by NABU.

Proposed citation:

The Nature and Biodiversity Conservation Union (NABU) (eds.), 2020: NABU's Follow-up Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia. Berlin, Addis Ababa.

Editor's note:

Although it was part of the overall assessment, the report does not include data on reptiles. As of the date of publication (April 2020), no report has been submitted by the expert in charge.

Print:

DBM Druckhaus Berlin-Mitte, a company after the Environmental management system EMAS III validated, produced according to RAL-UZ 195 Blue Angel, printed on 100% recycled paper

This print product is awarded with the Blue Angel.

Design: springer f3, corporate communication, Cologne, Germany

Photographs cover and back side:

Cover: Bruno D'Amicis; back side: NABU/Tom Kirschey (frogs), Bernhard Walter (bird), Andreas Gminder (fungi), Viola Clausnitzer, Klaas-Douwe B. Dijkstra (dragonfly)

Order/ISBN:

The book is available at NABU's shop www.NABU-shop.de. ISBN 978-3-925815-31-7

First published in 2020

german cooperation DEUTSCHE ZUSAMMENARBEIT

This report has been compiled by:

Svane Bender Dr Viola Clausnitzer Dr Klaas-Douwe B. Dijkstra Andreas Gminder Dominic Kamau Kimani Tom Kirschey Holger Meinig Ondřej Mikula Dr Hendrik Müller Abiy Tadele Mengistu Wale Bernhard Walter Kiros Welegerima Dr Meheretu Yonas

NABU's Follow-up Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia

Table of Contents

Participants of NABU's follow-up biodiversity assessment		
List of abbreviations		
Organisational profile		
Acknowledgements		
Executive summary		

Background and approach

1. Introduction	9
1.1 Objectives of the follow-up biodiversity assessment	9
1.2 NABU's work at Kafa	
2. Physical and cultural context of the research area	
2.1 Geomorphology	
2.2 Climate	
2.3 The Kafa Biosphere Reserve	
2.4 Main habitat types at the Kafa Biosphere Reserve	
2.5 Impression of major habitat types at the Kafa BR	
3. Methodological approach	
3.1 Sampling site selection	
3.2 Areas of particular ecological importance	23
3.3 Data collection and management	
4. Summary of results	
5. References	
6. Annex	
6.1 Photos	

Fungi of the Kafa Biosphere Reserve

3	2
-	_

52

8

rungi of the Rata Biosphere Reserve	JZ
1. Introduction	
2. Materials and methods	
2.1 Study area	
2.2 Sampling methods	
2.3 Collection methods	
2.4 Data analysis	
3. Results and discussion	
3.1 Collection methods	
3.2 Habitats	
3.3 Species/groups	
4. Conclusions and recommendations for conservation and monitoring	
4.1 Recommendations for conservation	
4.2 Suggestions for future studies	
5. References	
6. Annex	
6.1 Appendices	
6.2 Photos	

Dragonflies and damselflies (Odonata) of the Kafa Biosphere Reserve

1. Introduction	54
2. Materials and methods	54
2.1 Study area	
2.2 Sampling and collecting methods	
2.3 Data analysis	
3. Results and discussion	
3.1 Diversity	
3.2 Sites and habitats	
3.3 Species	
4. Conclusions and recommendations for conservation and monitoring	
4.1 Recommendations for dragonfly conservation	
4.2 Suggestions for future studies	

5. References	58
6. Annex	
6.1 Appendices	
6.2 Photos	
Amphibians of the Kafa Biosphere Reserve	70
1. Introduction	
2. Materials and methods	73
2.1 Study area	
2.2 Sampling methods	
2.3 Data analysis	
3. Results and discussion	
3.1 Amphibia	
4. Conclusions and recommendations for conservation and monitoring	
4.1 Recommendations for amphibian conservation	
4.2 Suggestions for future studies	
5. References	
6. Annex	
6.1 Appendices	
6.2 Photos	

Birds of the Kafa Biosphere Reserve

1. Introduction	88
2. Materials and methods	
2.1 Study area	
2.2 Sampling methods	
2.3 Data analysis	
3. Results	
3.1 Forest sites	
3.2 Wetlands	
4. Discussion	
5. Conclusions and recommendations for conservation and monitoring	112
5.1 Recommendations for conservation and monitoring	
5.2 Suggestions for future studies	
6. References	
7. Annex	118
7.1 Tables	118
7.2 Photos	126

Small- and medium-sized mammals of the Kafa Biosphere Reserve	130
1. Introduction	132
2. Materials and methods	133
2.1 Study area	
2.2 Sampling methods	
2.3 Data analysis	
3. Results and discussion	134
3.1 Soricomorpha	
3.2 Rodentia	
3.3 Records of mammal species other than Soricomorpha or Rodentia	
4. Evaluation of survey results	143
5. Conclusions and recommendations for conservation and monitoring	143
6. Acknowledgements	143
7. References	144
8. Annex	147
8.1 Tables	
8.2 Photos	

86

Participants of NABU's follow-up biodiversity assessment

International experts

Dr Viola Clausnitzer Dr Klaas-Douwe B. Dijkstra Andreas Gminder Dominic Kamau Kimani Tom Kirschey Holger Meinig Ondřej Mikula PD Dr Hendrik Müller Bernhard Walter

Ethiopian experts

Zinaw Asaye Eskedar Asfaw Dr Yodit Ayele Habtamu Deribe Gebre Egzeabeher Abeje Kassie Manaye Misganaw Seid Muhammad Teferi Paulos **Mintesinot Shetachew** Abiy Tadele Woldemariam Tesfahunegn Mengistu Walle Kiros Welegerima Tariku W/Michael Dr Meheretu Yonas

NABU representatives

Asaye Alemayehu Stefanie Brandes Yalemwas Endalkachew Yonas Gezahegn Geremew Legesse Abdurazak Sahile Marie Schoroth Anteneh Tamirat Bogale Mesfin Tekle

Field assistants and rangers

Mohamed Abamecha Admasu Assefa Wondwosen Bekele Abebe Belachew Mitiku Gebremariam Abera Hoeto Siraj Hussen Girma Kebede Wodajo Kebede Nasir Ousiman Abdu Siraj 3 drivers

- NABU member Private NABU member National Museums of Kenya NABU Headquarters NABU member Czech Academy of Sciences Friedrich-Schiller-University Jena NABU Working Group Africa
- **Bonga University Bonga University Bonga University** Bonga University Ethiopian Biodiversity Institute **Ethiopian Biodiversity Institute** Ethiopian Biodiversity Institute **Bonga University Bonga University** Office of Environment Forest and Climate Change Control **Bonga University** Ethiopian Biodiversity Institute Ethiopian Biodiversity Institute Mekelle University Office of Environment Forest and Climate Change Control Mekelle University
- NABU Project Office Bonga NABU Headquarters NABU Project Office Bonga NABU Project Office Bonga NABU Head Office Addis Ababa NABU Project Office Bonga NABU Headquarters NABU Headquarters NABU Project Office Bonga
- NABU ranger NABU ranger NABU Project Office Bahir Dar NABU ranger NABU ranger

Odonata Odonata Fungi Birds Amphibians/Reptiles Mammals Amphibians/Reptiles Birds

Fungi Fungi Birds Fungi Odonata Amphibians/Reptiles Odonata Odonata Odonata Birds Mammals Birds Mammals Birds Amphibians/Reptiles Mammals

Natural Resource Management Officer Project Coordinator German side Finance and Administration Officer Driver Driver Communication Officer Trainee Intern Senior Local Project Coordinator

Birds Amphib

Amphibians/Reptiles All teams Fungi Odonata Odonata Mammals Amphibians/Reptiles Fungi Birds Mammals

List of abbreviations

a.s.l.	above sea level
BMU	German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
BMZ	German Federal Ministry for Economic Cooperation and Development
CAFA	Community Action for Biodiversity and Forest Conservation and Adaptation to Climate Change in the Wild Coffee Forests
CBD	The UN Convention on Biological Diversity
CHEG	A collection of fungi, with members of the Clavariacaeae, Hygrocybe, Entolomataceae and Geoglossaceae
CR	Critically Endangered
СҮТВ	Mitochondrial cytochrome b
DFSC	Danida Forest Seed Centre
DMDP	Danida Market Development Partnerships
DMFA	Danish Ministry of Foreign Affairs
DNA	Desoxyribonucleic acid
EBI	Ethiopian Biodiversity Institute
EN	Endangered
EWNHS	Ethiopian Wildlife and Natural History Society
FAO	Food and Agriculture Organization of the United Nations
GRV	Great Rift Valley
GIZ	Deutsche Gesellschaft für Internationale Zusammenarbeit
IBA	Important Bird Area
IBC	Institute of Biodiversity Conservation
ICRAF	World Agroforestry
IKI	International Climate Initiative
IPGRI	International Plant Genetic Resources Institute
ITS	Internal Transcribed Spacer
IUCN	International Union for Conservation of Nature
Kafa BR	Kafa Biosphere Reserve
КВА	Key Biodiversity Area
KDA	Kafa Development Association
MoARD	Ministry of Agriculture and Rural Development
NABU	The Nature and Biodiversity Conservation Union
NGO	Non-Governmental Organisation
NT	Near Threatened
PFM	Participatory Forest Management
RFPA	Regional Forest Priority Area
SAFORGEN	The sub-Saharan African Forest Genetic Resources Programme
SNNPR	Southern Nations, Nationalities and Peoples' Region
SSC	Special Survival Commission
UNESCO	United Nations Educational, Scientific and Cultural Organization
VU	Vulnerable
WBISPP	Woody Biomass Inventory and Strategic Planning Project (Ethiopia)
ZFMK	Zoologisches Forschungsmuseum Alexander Koenig

Organisational profile

For 120 years, NABU (The Nature and Biodiversity Conservation Union) has been promoting the interests of people and nature, drawing on its unwavering commitment, specialised know-how and the backing of 770,000 members and supporters. NABU is Germany's oldest and largest conservation NGO with its headquarters in the capital and 15 regional branch offices in almost every federal state of Germany. 2,500 volunteer groups around the country support NABU's work.

NABU has clearly defined aims: providing environmental education, preserving habitat and species biodiversity, promoting sustainable agriculture, forestry and water management and enhancing the profile of nature conservation within the society. NABU's work also targets global warming, species conservation, sustainable settlement, sustainable waste and infrastructure management and consumer protection.

NABU is the German partner of BirdLife International and supports partner organisations around the world.

Africa, Asia and Russia form the geographical focus of NABU's international commitment. Offices in several countries in Africa and Asia and in Brussels provide expertise and implement projects to conserve and manage habitat and species diversity. Fostering set up and management of protected areas, in particular UNESCO biosphere reserves, community-based ecosystem restoration and management, sustainable local development in collaboration with green entrepreneurs and farmers as well as adaptation to climate change and capacity development are amongst NABU's international core targets. In Ethiopia NABU runs several offices in the capital and in different parts of the country implementing large projects since 2006.

Contact:

Svane Bender Deputy Head of International Affairs/ Head of Africa Programme Email: Svane.Bender@NABU.de www.en.NABU.de

Acknowledgements

Foremost, NABU would like to express its gratitude to the German Federal Ministry for Economic Cooperation and Development (BMZ) for supporting the project 'Community Action for Biodiversity and Forest Conservation and Adaptation to Climate Change in the Wild Coffee Forests (CAFA)' and thus as part of it, this follow-up assessment.

The assessment has additionally been supported by NABU International – Foundation for Nature.

We also would like to express our thankfulness to the Ethiopian, Czech, Dutch, German and Kenyan experts who contributed to the success of the assessment by participating in the fieldwork in the rainy season, vividly analysing species and findings and producing the reports for this overall assessment report.

Moreover, we would like to sincerely thank our partners for this assessment which are the Ethiopian Biodiversity Institute (EBI) for facilitating data collection and sample permits, the Kafa Zone Administration and Office of Environmental Protection, Forest and Climate Change Control as well as Bonga University and Mekelle University.

We would also like to thank the local communities for their openness to our field study and the welcoming atmosphere they provided to our international teams in the field.

We further convey our utmost thankfulness and appreciation to our NABU teams in Bonga, Addis Ababa and Berlin for preparing, hosting and facilitating this assessment.

Svane Bender NABU Headquarters Deputy Head of International Affairs/ Head of Africa Programme

Executive summary

From 30 July to 13 August 2019 NABU hosted the second biodiversity assessment at the Kafa Biosphere Reserve (BR) as follow-up to a first one held in 2014. A team of nine international experts from the Czech Republic, Germany, Kenya and the Netherlands, 16 Ethiopian experts from partnering institutions and science as well as 10 NABU rangers and nine NABU team members conducted intensive field work on amphibians, birds, dragonflies and damselflies, fungi and small- and medium-sized mammals. NABU has been working towards the protection of Kafa's unique environment with national and international partners and support from the German government since 2006. We aim to ensure the conservation and restoration of the Afromontane cloud forests and their wetlands to preserve ecosystem resilience and unique biodiversity, reduce CO₂ emissions and sustain ecosystem services for local communities. In cooperation with local communities, ecosystems shall be assessed and restored, secured and transformed into sustainable, participative community management.

The Kafa BR in south-western Ethiopia (Southern Nations, Nationalities and Peoples' Region, SNNPR) combines a distinctive richness of culture and biodiversity, which is unique among paleotropical regions. Up to 2014, however, the immense local biodiversity had not been professionally assessed and documented. This changed with NABU's first biodiversity assessment where 12 taxa were assessed for the first time. This assessment detected a high biological diversity at habitat level and in species per habitat. The identified habitats envisaged a high heterogeneity and were located in only short distances from each other. Particularly outstanding was the discovery of approximately 50 new species to science (mostly insects). Based on experts' knowledge and the subsequent analysis of the results, 29 indicator species and 16 flagship species were selected among the recorded species.

With a second, follow-up assessment in the rainy season of 2019, NABU aimed to obtain comparable and new data on the status of biodiversity between years and seasons for specific taxonomic groups. Additionally, the second assessment further developed the capacities of the local authorities which ensures the continuation of regular assessments at the Kafa BR even without initiation and large-scale support by NABU. The gathered data will be analysed and incorporated into the biodiversity monitoring scheme. This report presents the results of **the follow-up assessment**. The following was found: At least 515 species have been recorded, 31 of which at the minimum are new to science (mainly fungi and one amphibian species) and 276 of which are new to Ethiopia. 29 species are endemic. The highest biodiversity was found in core areas of the biosphere reserve such as Mankira and Komba Forest as well as in natural and semi-natural habitats in general.

The assessment was part of NABU's current project 'Community Action for Biodiversity and Forest Conservation and Adaptation to Climate Change in the Wild Coffee Forests (CAFA)' supported by the German Federal Ministry for Economic Cooperation and Development (BMZ).

1. Introduction

From 30 July to 13 August 2019 NABU hosted a second assessment at the Kafa Biosphere Reserve (Kafa BR) as follow-up to a first one held in 2014. A team of nine international experts from the Czech Republic, Germany, Kenya and the Netherlands, 16 Ethiopian experts from partnering institutions and science as well as 10 NABU rangers and nine NABU team members conducted intensive field work on various taxa. The assessment was part of NABU's project 'Community Action for Biodiversity and Forest Conservation and Adaptation to Climate Change in the Wild Coffee Forests (CAFA)'.

This report presents the results and findings of our second in-depth biodiversity assessment. By highlighting the findings and analysed data of all surveyed taxa except reptiles (amphibians, birds, dragonflies and damselflies, fungi, small- and medium-sized mammals) this report is another step forward in verifying and significantly expanding existing knowledge on species, their habitats and their major threats at the Kafa BR.

The assessment report is structured as follows: The introduction in the first part outlines the objectives of the follow-up assessment as well as its role and merits for NABU's work at the Kafa BR. It is followed by a description of the research area (Chapter 2). The analytical framework of the follow-up biodiversity assessment is outlined in the methodology section (Chapter 3). Subsequently, the overall results of the follow-up biodiversity assessment are highlighted (Chapter 4).

The second part contains the detailed reports of the assessment for the single taxa.

1.1 Objectives of the follow-up biodiversity assessment

The Kafa BR in south-western Ethiopia (Southern Nations, Nationalities and Peoples' Region, SNNPR) combines a distinctive richness of culture and biodiversity, which is unique among paleotropical regions. Therefore, the highly specialised and locally adapted fauna and flora occurring in complex habitats are of international conservation value and of immense economic value to both the local communities and the global community. Up to 2014, however, the immense local biodiversity had not been professionally assessed and documented. This changed with NABU's first biodiversity assessment from 3 to 13 December 2014 where 12 taxa were assessed for the first time. The first biodiversity assessment detected a high biological diversity at the Kafa BR. This was reflected by the high diversity at habitat level and in species per habitat. The identified habitats envisaged a high heterogeneity and were located in only short distances from each other. Particularly outstanding was the

discovery of approximately 50 new species to science (mostly insects). Based on experts' knowledge and the subsequent analysis of the results, 29 indicator species and 16 flagship species were selected among the recorded species. 13 out of 16 flagship species also served as indicator species. Out of the 29 indicator species, 15 were found for montane, bamboo and floodplain forests (five trees, three birds, two tree frogs, two bats, two fungi and one primate) and 14 are indicators for wetland and river areas (nine birds, four insects and one mollusc).

The overall goal of NABU's follow-up assessment was to repeat the assessment conducted in the dry season of 2014 with some of the taxonomic groups (amphibians, birds, dragonflies and damselflies, fungi, small- and medium-sized mammals) in the rainy season. This was considered essential to obtain comparable and new data on the status of the Kafa BR's biodiversity between years and seasons. As in 2014 the follow-up assessment concentrated on the status of indicator and flagship species and determined their threat status. By repeating the assessment during the rainy season, it was considered very likely to find additional new species. Moreover, the second assessment further strengthens the capacity of the local authorities which ensures the continuation of regular assessments at the Kafa BR even without initiation and large-scale support by NABU. The gathered data will be analysed and incorporated into a biodiversity monitoring scheme. This will help to preserve the area's unique diversity.

NABU highly acknowledges Ethiopia's efforts and success in biodiversity conservation and the fight against biopiracy. The assessment contributes towards Ethiopia's aims to meet international, national and local targets for biodiversity conservation including international conventions such as the Convention on Biological Diversity (CBD) and the Nagoya Protocol.

1.2 NABU's work at Kafa

NABU has worked towards the protection of Kafa's unique environment with national and international partners and support of the German government since 2006. From 2006 to 2010, NABU lead the establishment of the Kafa BR from application up to recognition by UNESCO's Man and the Biosphere Programme in the wider framework of a wild coffee related Public Private Partnership project. The UNESCO concept opened up new opportunities for the region and for the country as a whole: untouched natural core zones, surrounding buffer zones and a large development zone would offer room for conservation, research and development. The process of establishing an appropriate zoning and planning of the biosphere reserve, in order to ensure the protection of the marvellous forests, took place with the support and involvement of more than 500 governmental representatives of the region. In 2010, the Kafa BR was finally recognised by UNESCO as one of the first biosphere reserves in Ethiopia. In the course of the successful establishment of the Kafa BR, NABU, the former Ministry of Science and Technology of the Federal Democratic Republic of Ethiopia and UNESCO signed a memorandum of understanding to establish further biosphere reserves in Ethiopia, for instance Lake Tana Biosphere Reserve. In order to strengthen the Kafa BR, NABU expanded its activities in the region and initiated a series of large-scale projects supported by the German government as well as smaller interventions with support from private foundations and individuals.

NABU aims to ensure the conservation and restoration of the Afromontane cloud forests and their wetlands in order to preserve ecosystem resilience and unique biodiversity, reduce CO_2 emissions and sustain ecosystem services for local communities. In cooperation with local communities, ecosystems shall be assessed and restored, secured and transformed into sustainable, participative community management.

Until point of publication of this report NABU supported the Kafa region through a series of projects:

- Coffee-novation: Green diversification of Ethiopia's garden coffee value chain (2019-2023, supported by the Danida Market Development Partnerships (DMDP) programme, Danish Ministry of Foreign Affairs (DMFA)).
- Community Action for Biodiversity and Forest Conservation and Adaptation to Climate Change in the Wild Coffee Forests (CAFA, 2017-2020, supported by the German Federal Ministry for Economic Cooperation and Development (BMZ)).
- Biodiversity under Climate Change: Community Based Conservation, Management and Development Concepts for the Wild Coffee Forests (2014-2017, supported by the International Climate Initiative (IKI) of the German Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU)).
- Climate Protection and Preservation of Primary Forests – A Management Model using the Wild Coffee Forests in Ethiopia as an Example (2009-2013, supported by BMU).
- Introduction of Sustainable Coffee Production and Marketing Complying with International Quality Standards using the Natural Resources of Ethiopia (2006-2008, Public Private Partnership supported by GIZ).

2. Physical and cultural context of the research area

2.1 Geomorphology

Ethiopia's geological and tectonic characteristics are strongly shaped by the Ethiopian magma dome and the development of the East African Rift system. The soils originate from rocks formed during the tertiary period and the subsequent geomorphic processes. They are characterised as deep, red, brown-grey and brown clay soils. The Ethiopian magma dome, shaped by a series of volcanic activity and geological formation in different geological eras, forms the foundation of the Ethiopian Highland (Dennis Moss Partnership, 2009). As a result of these complex geological processes, the Ethiopian landscape is very diverse, ranging from vast plains to Alpine-like mountain ranges. Sometimes referred to as the 'Roof of Africa', the Ethiopian Highlands form the largest continuous area of its altitude on the whole continent, with little of its surface falling below 1,500 m above sea level (m a.s.l.) and peaks of up to 4,550 m a.s.l. The Kafa Zone situated in the western plateau of these highlands is located on the tertiary layers, consisting mainly of sandstone and limestone, and of tertiary volcanic rocks.

The topography of the study area is characterised by a complex system of highlands, steep valleys and large flatlands, which drops to the lowlands in the south. The area's altitude ranges from 1,020 m a.s.l. in the south to 3,350 m a.s.l. in the north-east with its lowest point east of Wacha in the Sherma Plain and its highest mountain range south of Kaka (Angiyo Kolla Mountain Range) (Dresen et al., 2015). The altitudinal variation results in extreme slope gradients, ranging from flat lowlands (e.g. south of Konda in the Gojeb Wetland) to extremely steep (>60°) areas (e.g. Machachi Forest, Latitude 7.190556, Longitude 35.985833) (Figure 1).

About 1.2% (8,360 ha) of the total biosphere reserve's spatial extent is very steep terrain (>35°) covered by tropical Afromontane cloud forest (Whitmore, 1993), plantations (80%) and agriculture (12%). All other steep areas are savannah or are covered by bush land. The most remarkable highlands include the Gurgura Mountains, Shonga Mountains, Yatana Mountains and Gola Mountains, along with Koma Summit and Saja Summit. Alemgono and Gojeb Wetland are the most extensive wetlands (Figure 2).

More information at:

www.en.nabu.de/projects/ethiopia/kafa

Mountains and wetlands are connected by numerous fertile valleys and lowlands, which extend mostly through the central part of the biosphere reserve (Figure 3). This great variety of landforms is responsible for highly diverse climate, soil and vegetation. According to the soil map produced by the WBISPP (2004), the dominant soils in the Kafa Zone are dystric nitosols (Nd). Adiyo, the south-western part of Telo and north and north-west of the Gewata Woredas are dominated by orthic acrisols (Ao). In addition, eutric fluvisols (Je), chromic luvisols (Lc), chromic vertisols (Vc) and pellic vertisols (Vp) can be found at the Kafa BR to varying degrees (EWNHS, 2008).

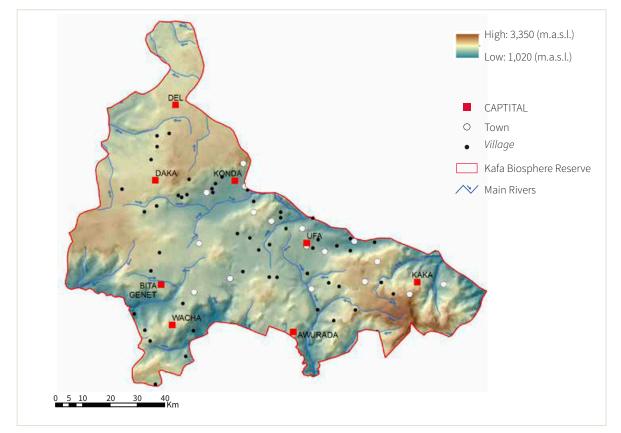


Figure 1: Altitudinal range at the Kafa BR (Dresen et al., 2015)

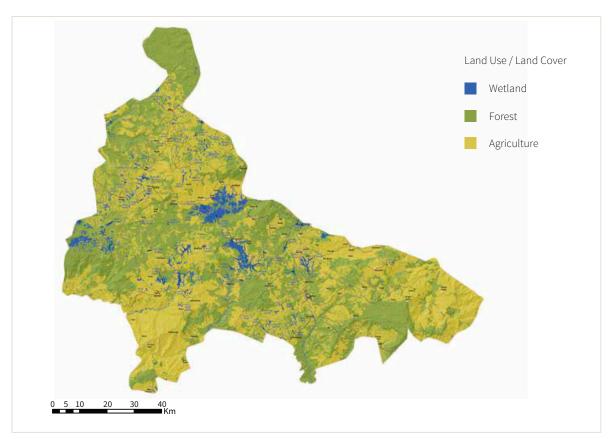


Figure 2: Wetlands at the Kafa BR (Dresen et al., 2015)

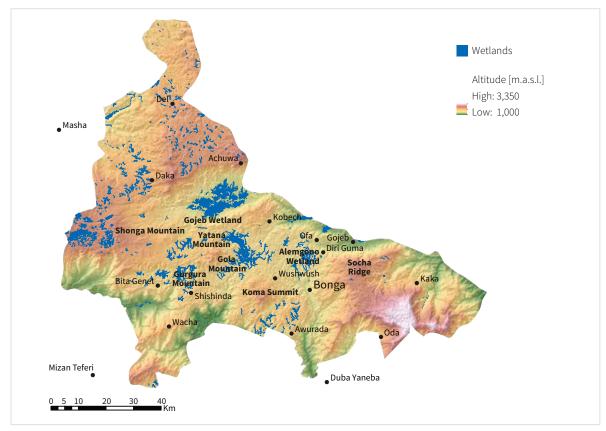


Figure 3: Topographic features of the Kafa BR

2.2 Climate

In general, the climate is characterised by a bimodal rainfall pattern, with the main rainy season between June and September and a short rainy period from February to April. Kafa receives its rainfall from the south-west monsoon, which reaches its maximum intensity during July and August. The average annual rainfall ranges from 1,500 mm in the lowlands up to 2,000 mm at the highest elevations (EWNHS, 2008). Thus, the Kafa BR is in the most humid part of the country, with only two to four dry months per year. According to Gamachu (1977), annual temperatures vary between 15 and 24°C. Due to the high variety of landscapes and altitudes within the Kafa BR, there are many microclimatic deviations from the usual rainfall patterns. According to Kassahun & Bender (2020) using statistical long-term data from the Climate Explorer Koninklijk Nederlands Meteorologisch Instituut Climate Change Atlas 2018 (accessed in May 2018) the temperatures are increasing significantly (Figure 4), while the precipitation is decreasing (Figure 5).

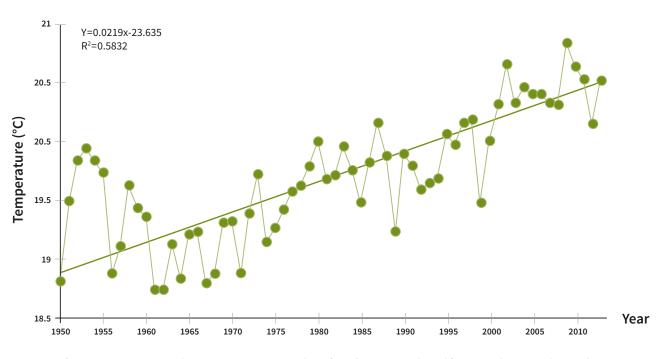


Figure 4: Increasing annual average temperatures at the Kafa BR (1950-2013, adapted from Kassahun & Bender, 2020)

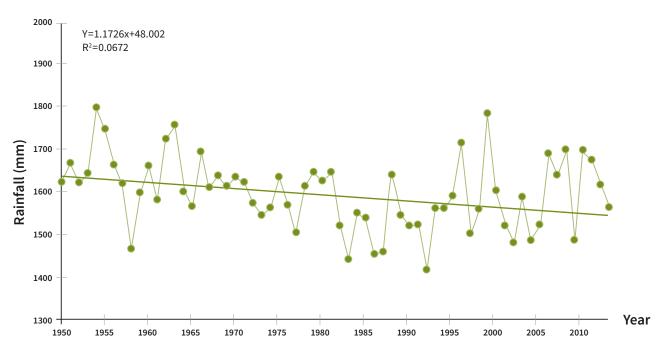


Figure 5: Decreasing trend for precipitation at the Kafa BR (1950-2013, adapted from Kassahun & Bender, 2020)

2.3 The Kafa Biosphere Reserve

The Kafa BR is located in the south-western highland region of Ethiopia, in the Southern Nations, Nationalities and Peoples' Region (SNNPR, Figure 6). It was designated as UNESCO biosphere reserve in 2010. Its planning and establishment as one of the first biosphere reserves of Ethiopia was a widely appreciated success under the technical guidance of NABU and within the framework of a German Public Private Partnership project (Bender-Kaphengst & Tekle, 2019).

The Kafa Zone has a total area of around 10,000 km² of which the Kafa BR covers more than 7,500 km². 47% of the Kafa BR are covered by forest with 4% (28,172 ha) being core zones serving as a refuge for endemic or endangered species (The Nature and Biodiversity Conservation Union, 2017). The region is characterised by Afromontane cloud forests and rain forests, which contain wild Coffea arabica, bamboo forests, grasslands and shrub lands (The Nature and Biodiversity Conservation Union, 2017). Because of its relevance to national biodiversity and as a catchment area, the Ethiopian government has put the area under partial national protection in the form of a Regional Forest Priority Area (RFPA). The area is particularly noteworthy for being the origin and the centre of Coffea arabica's genetic diversity (valued at ~1.5 billion US\$) and therefore as a globally significant in situ gene bank. The overall economic value of Coffea arabica has been estimated at approximately 1.5 billion US\$ (Hein & Gatzweiler, 2006).

Different political and demographic factors have driven changes in land use and land cover in the Kafa Zone. In the 1970s, major land redistribution occurred, followed by large-scale resettlement in the 1980s. The 1990s were shaped by the agricultural investment policy and the promotion of cereal production, along with the Ethiopian Forestry Action Plan. Finally, the 2000s were influenced by large-scale agricultural expansion, the establishment of National Forest Priority Areas, participatory forest management (PFM) projects and ultimately the UNESCO biosphere reserve (Tadesse et al., 2014). The Kafa Zone has a little over 1 million inhabitants. The average population density of the Kafa BR is 130.14 p/km². Administratively, the Kafa BR consists of 11 Woredas, 256 Kebeles and 25 urban towns. According to a background study by Chernet (2008), the ethnic composition of the Kafa Zone is dominated by Kaffecho (81%), followed by Bench (6%), Amhara (6%) and Oromo (2%). The remaining 5% also include marginalised groups like Manja/Mano. The biggest religious group are Orthodox Christians (67%), followed by Protestants (20%) and Catholics (10%). There is also a small Muslim community (3%).

More than 90% of the inhabitants' livelihoods depend on subsistence farming, the sale of coffee (10% forest coffee/65% garden coffee), forest honey and the use of natural resources, e.g. for food, fuel, building material and medicinal plants or spices (SNNPR, 2013). Mainly grain is being cultivated, including the local Ethiopian grain species teff (*Eragrostis tef*), legumes and the locally important Abyssinian banana (*Ensete ventricosum*), whose starch-rich stem is fermented for bread. The most common livestock is cattle (7.5 per household, 2011/2012, local government), followed by poultry, sheep and goats. Wild coffee harvesting has been practised over centuries; complex tenure arrangements and traditions and rites have been developed (Bender-Kaphengst & Tekle, 2019).

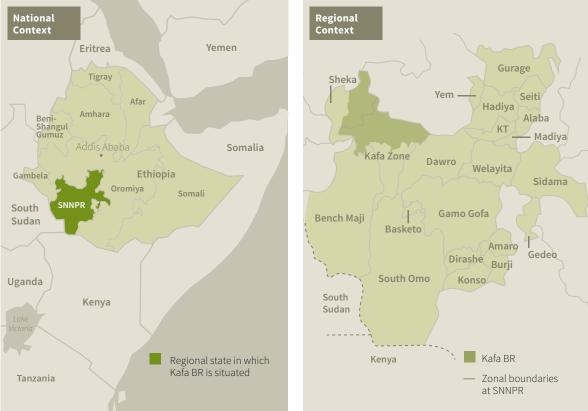


Figure 6: Location of the Kafa BR at a continental, national and regional scale

Figure 7 shows the distribution of the population at the Kafa BR. Chena is the most densely populated district (Woreda), followed by Tello, Gesha, Gimbo and Adiyo Woredas. Most of the core zones at the Kafa BR are located in these Woredas along with most of its characteristic habitats, such as bamboo forests and wetlands.

UNESCO biosphere reserves have the explicit purpose of reconciling people's needs with nature conservation. Thus, the aim is to bring ecological, social and economic factors together to create sustainable ways of living (Bridgewater, 2002). At the Kafa BR, there are long traditions of using wild plants and animals for various purposes. However, traditional management techniques may no longer be sustainable due to pressures from population growth and resettlement programmes. New technologies and the economic interests of external actors have produced significant changes in land use management with detrimental effects on biodiversity and ecosystem services. Preserving biodiversity requires new land management approaches and techniques. In this sense, it is essential to consider socio-cultural factors when developing feasible conservation strategies and management plans.

While the initiative for the establishment of the Kafa BR was taken by NABU in 2006 in the frame of a German Public Private Partnership project, the Zone's government and the majority of the local population were positive about the reserve's establishment (Bender, 2011). NABU supervised the development of a UN-ESCO biosphere reserve at Kafa: The concept opened new opportunities for the region and for the country as a whole: untouched core zones of nature, surrounding buffer zones and a large development zone offer room for conservation, research and development. A large-scale biosphere reserve has the potential to increase the population's income through the international export of wild coffee and to provide additional marketing opportunities both for local products and for tourism to the birthplace of coffee. The existing participatory forest management scheme (PFM) could be easily extended and improved.

After an official consultation at regional and community levels, planning workshops were held and governmental staff were trained. Subsequently, demarcation committees were nominated and a time-consuming resource mapping was conducted together with all affected local communities. When all stakeholders had agreed upon a zoning scheme, the actual demarcation began with the support and involvement of more than 500 representatives of the region (Bender, 2011). The official managing entity was planned to be affiliated to the Kafa Zone Department of Agriculture & Rural Development in Bonga town and its related administrative offices in the countryside. In the communities, continuous communication gave people an understanding of the biosphere reserve concept which induced increased confidence building and made them committed multipliers and community representatives for all further activities. Finally, the reserve was accepted into UNESCO's world network of biosphere reserves in 2010 with the following features (see Table 1).

NABU's first biodiversity assessment detected high biological diversity at the Kafa BR, reflected in high diversity at both the habitat level and the species in each habitat. The identified habitats exhibited a high heterogeneity despite the short distance between them. Particularly outstanding was the record of approximately 50 species which are new to science or recorded for the Kafa region for the first time. The species comprised amongst others three fungi species (Ascocoryne kafai ined., Cerinomyces bambusicola ined., Coniolepiota kombaensis ined.), one mollusc species (Pisidium sp.), one species of Hyperoliidae (genus Leptopelis), two beetle species (Pachysternum sp. nov. Tachinoplesius schoelleri Schülke, 2016), four fly species (family Diopsidae), one bee species (genus Colletes) and one species of Rhinolophus from the horseshoe bat family. At least 40 further insect species new to science are to be expected. Another important finding was the extremely high rate of endemism. Most of the assessed taxa consisted of about 30% of endemic species. This high degree of endemism can be explained by the isolated vast highlands surrounded by dry lowlands, along with the area's geological and tectonic development. Combined with the exceptionally high rate of endemism, the high diversity at the habitat level and the heterogeneity of landscapes makes the Kafa BR an exceptional area for biodiversity protection.

Based on expert knowledge and the subsequent analvsis of the results, 29 indicator species and 17 flagship species were identified from the recorded species. Thirteen out of 17 flagship species also serve as indicator species. Of the 29 indicator species, 15 are indicators for Afromontane, bamboo and floodplain forests (five trees, three birds, two tree frogs, two bats, two fungi and one primate) and 14 are indicators for wetland and river areas (nine birds, four insects and one mollusc). Deforestation was assumed to be the major threat for both indicator and flagship species occurring in forest areas, followed by habitat fragmentation and forest/ habitat degradation. Drainage activities, agricultural run-offs, fertiliser and domestic and urban waste were identified as key threats to the biodiversity of river and wetland areas. It was concluded that further research was needed to specify and quantify these threats.

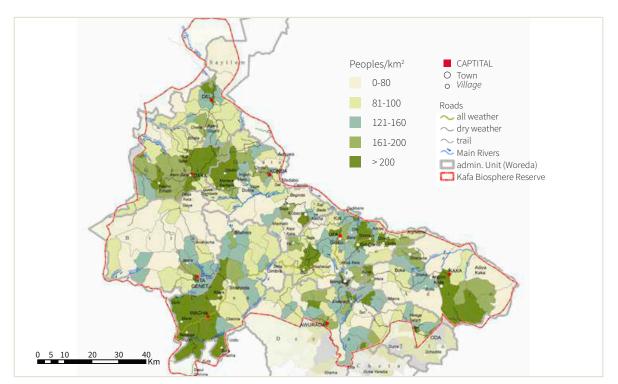


Figure 7: Population density at the Kafa BR (adapted from Dresen et al., 2015)

BR zones	Size and percentage	Forest area	Key functions	Priority for the biodiversity assessment
Core zone	28,172 ha (4%)	28,110 ha	Serves as a refuge for various endemic and/or endan- gered species and provides opportunities for long- and short-term research and monitoring programmes, as well as non-consumptive use.	High
Candidate core zone	219,130 ha (28%)	174,482 ha	Contains highly endangered habitats. Candidate core zones should be included into the core zones after feasi- bility assessment.	Medium to high
Buffer zone	161,351 ha (22%)	87,487 ha	Connects conservation areas that have been isolated by human activities. Buffer zones should encourage a symbiotic relationship between conservation and nature-related economic activities.	Medium
Transition zone	336,069 ha (46%)	61,560 ha	Enhances environmental integrity or rehabilitation of unused farmland and plantations. Used to restore and preserve sites and/or features of historical and cultural significance.	Low
Total	744,722 ha (100%)	351,639 ha		

According to Bender-Kaphengst & Tekle (2019) the natural ecosystems of the Kafa BR are increasingly being degraded. The degradation also endangers important ecosystem functions and subsequently increases the human vulnerability to climate change. Due to climate change, there is a rise in temperatures, changed precipitation patterns, more frequent droughts and a threat of long-term water supply. At the same time, the degradation enforces surface run-off and fosters soil erosion, with negative consequences for soil fertility and water quality through sedimentation and reduced ground-water formation. Besides severe impacts on biodiversity, the loss of forests has also led to freeing a considerable amount of CO₂ and impair the forest's function as a carbon sink. Climate change impacts like irregular and heavy rainfall, extreme droughts and heavy frosts as well as proliferation of pests are challenging farmers and ecosystems. In particular, the wild Arabica coffee is at risk (Davis et al., 2012). Although laws and regulations for the protection and utilisation of forests and biodiversity exist in Ethiopia, insufficient capacities of the responsible institutions prevent an effective implementation.

2.4 Main habitat types at the Kafa Biosphere Reserve

The Kafa BR is home to the last surviving moist evergreen montane forests in the Eastern Afromontane biodiversity hotspot (Mittermeier et al., 2004). The area is also recognised as a key biodiversity area (KBA). The wild coffee tree, *Coffea arabica*, is indigenous to the understorey of Kafa's natural montane forest. In some areas it is harvested without proper management. In other areas, designated as PFM sites, the wild coffee is harvested in forest fragments, where farmers cut and thin out parts of the upper canopy and annually slash the forest understorey. This form of forest use is known to be structurally sustainable for the natural forest vegetation.

According to the Ethiopian Biodiversity Institute (2005), adapted by Dresen (2014), there are five main habitat types in the Kafa Zone (Figure 8):

- Evergreen montane forest and grassland complex: This complex habitat occurs between altitudes of 1,900 and 3,300 m a.s.l. and covers 52% of the biosphere reserve. It includes many of the highlands located in the buffer area of the biosphere reserve. This habitat occurs in areas which are often densely populated, leading to pressures from expansion of arable land.
- Moist evergreen montane forest: This habitat occurs between 1,500 and 2,600 m a.s.l. and covers 26% of the biosphere reserve. This type of forest is of global conservation significance due to the occurrence of

wild *Coffea arabica*. In addition to deforestation for arable land, timber extraction is a major threat to this habitat.

- Wetlands: A complex system of wetland habitats occurs between 900 and 2,600 m a.s.l. These sensitive ecosystems are of utmost importance for the local communities, for example in providing materials for building shelter, for grazing and freshwater supply. At the same time, wetlands are also increasingly under pressure due to intense grazing and other land uses.
- Combretum-Terminalia woodland: The Ethiopian Biodiversity Institute (2005) has classified some areas of the Kafa BR as Combretum-Terminalia woodland, which were later corrected to bamboo forests by Dresen (2014). Figure 8 shows the older classification (light green), while Figure 9 displays the habitat types distinguished in a land use/land cover map in 2014.
- Sub-Afroalpine habitat: This habitat occurs at altitudes higher than 3,200 m a.s.l. and covers only 0.3% of the total biosphere reserve. This vegetation type is under severe threat due to agricultural expansion. Indigenous tree species such as *Hagenia abyssinica* are under high pressure.

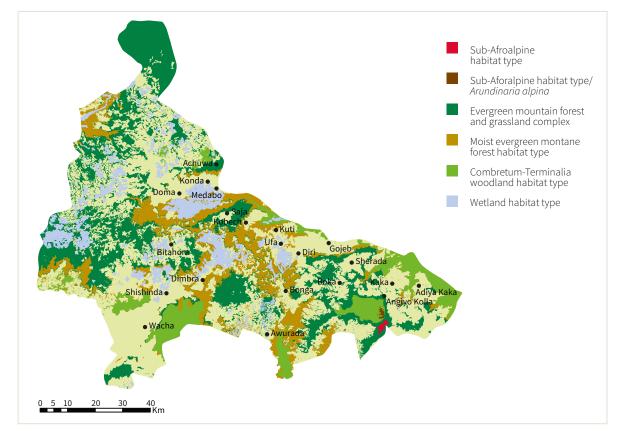
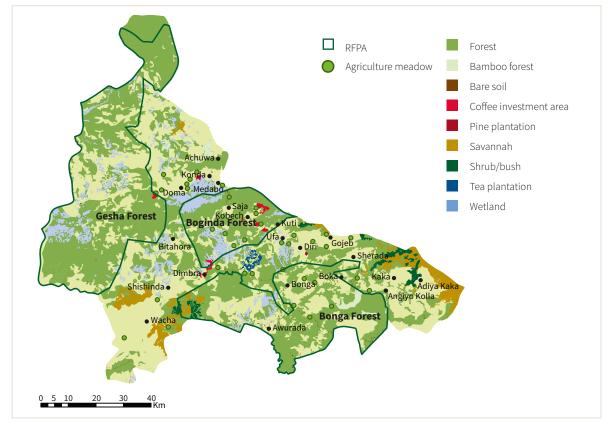



Figure 8: Habitat types in the Kafa Zone (IBC, 2005 adapted by Dresen, 2014)

Figure 9: Regional Forest Priority Areas according to Million, B & Leykun, B. (2001) (red lines) projected on land use and land cover at the Kafa BR, adapted by: Elisabeth Dresen (2014)

2.5 Impression of major habitat types at the Kafa BR

Figure 10: Boginda Forest (photo: Bruno D'Amicis)

Figure 11: Komba Forest (photo: NABU/Svane Bender)

Figure 12: Mankira Forest (photo: Bruno D'Amicis)

Figure 13: Bamboo Forest (photo: Angelika Berndt)

Figure 14: Wetland vegetation (photo: Bernhard Walter)

Figure 15: Riverine vegetation close to God's Bridge (photo: NABU/Svane Bender)

3. Methodological approach

With a second, follow-up assessment in the rainy season of 2019, NABU aimed to obtain comparable and new data on the status of biodiversity between years and seasons for specific taxonomic groups. Additionally, the follow-up survey further developed the capacities of the local authorities, which ensure the continuation of regular assessments at the Kafa BR even without initiation and large-scale support by NABU. The gathered data will be analysed and incorporated into the biodiversity monitoring scheme.

Complex administration was required prior to the fieldwork to ensure compliance with the Ethiopian law. The follow-up biodiversity assessment was conducted in close cooperation with the relevant Ethiopian authorities and research institutions with agreements to use and share the information gained from the assessment.

In total, 25 experts (16 Ethiopian experts from partnering institutions and science and nine international experts from the Czech Republic, Germany, Kenya and the Netherlands) as well as 14 NABU rangers and field assistants and nine NABU team members were involved in the assessment. Five of the Ethiopian experts were delegates of the Ethiopian Biodiversity Institute (EBI).

The experts were assembled into five different teams based on different taxa:

- Amphibians and reptiles
- Birds
- Dragonflies and damselflies
- Fungi
- Small- and medium-sized mammals

The names and current affiliations of each expert and participant are provided in the participants section at

the beginning of this report. The experts were supported by NABU's local team and by local field guides where required. Sampling sites were selected based on the first assessment and the needs and requirements of the experts regarding specific habitats of the surveyed taxa.

Logistics and organisational support were provided by staff from NABU Headquarters Germany and NABU Ethiopia, along with several four-wheel drive vehicles and their drivers. In total, 48 people were involved in the assessment. The headquarters of the operation were based at NABU's Project Office Bonga.

3.1 Sampling site selection

Sampling sites were selected based on ecological parameters as per surveyed taxon, results and open questions from the first assessment and the core objectives of this follow-up assessment. Many of the sites assessed during the first survey were revisited in order to enrich data with sampling results from the rainy season. The majority of visited sites was selected following criteria such as biodiversity value (core and candidate core zones in forests and wetlands, see Figure 16), coverage of national forest priority areas (Bonga, Boginda and Gesha Forest, see Figure 9) and earlier inventories i.e. NABU's assessment of major wetlands and riverines.

Selection criteria such as access to the sites, distance from Bonga and road conditions during the rainy season as well as security i.e. for overnight field stays were also taken into account for practical reasons.

The chosen study sites can be further divided into those which are of particular ecological importance due to having near-to-intact ecosystems and those which are regularly used by humans. These include different habitats, which are specified below.

Table 2: Study areas' priorities

Area	BR zones	Altitudinal range (a.s.l.)	Priority
Montane forests	Core and core candidate	1,500-2,600 m	High
Wetlands Floodplain forests	Candidate and buffer	900-2,600 m	High
Bamboo forests	Core	2,400-3,050 m	High

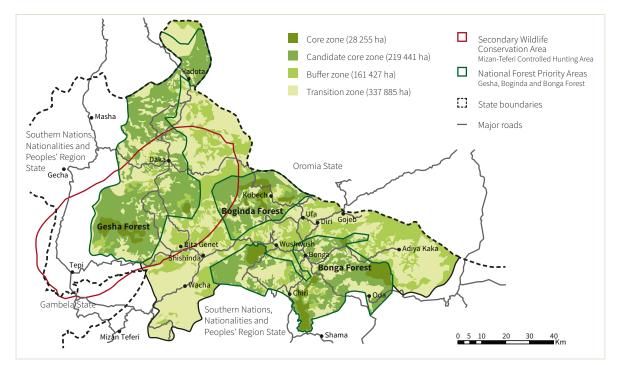


Figure 15: Forest priority areas within the Kafa BR including Bonga, Boginda and Gesha Forests (2016)

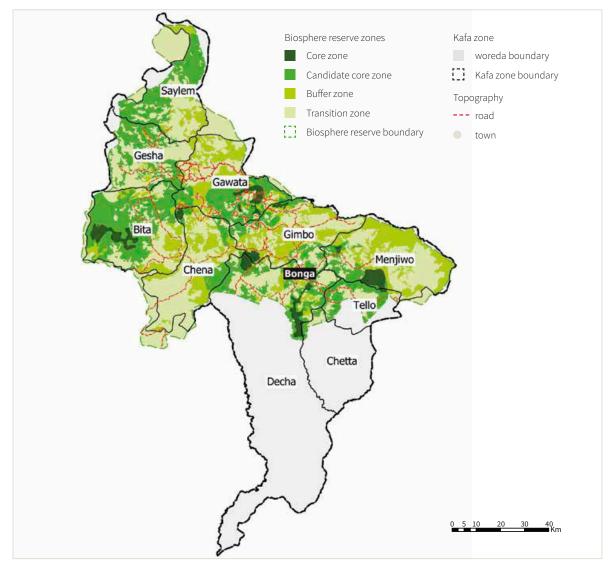


Figure 16: Administrative boundaries at the Kafa BR

3.2 Areas of particular ecological importance

Bamboo forests: This extensive and unique vegetation at the Kafa BR occurs at altitudes between 2,400 and 3,050 m a.s.l. and is characterised by bamboo undergrowth either in pure stands or mixed with trees, including *Hagenia abyssinica*, *Myrsine melanophloeos* and *Hypericum revolutum* (Bekele, 2003). A huge and unique patch is located at Adiyo Woreda in the eastern part of the Kafa BR.

Afromontane forests: These are characterised by dense vegetation, a complex understorey and distinctive tree layers where the emergent trees reach heights of around 25 m. They occur in hilly areas, shaped by depressions, streams and creeks. Along their altitudinal gradient, these forest areas are divided into two types:

- (a) Evergreen montane forest: This type of vegetation occurs between altitudes of 1,900 and 3,300 m a.s.l. and covers 52.1% of the Kafa BR.
- (b) Moist evergreen montane forest: This habitat occurs between 1,500 and 2,600 m a.s.l. and covers 26% of the Kafa BR. This type of forest is of global conservation importance due to the presence of wild *Coffea arabica*.

Wetlands: Based on former NABU wetland assessments and community restoration and management programmes, Alemgono, Gojeb and Shorori Wetlands were selected for the assessment. These habitats are complex systems mostly composed of flooded savannahs, forested islands and border zones which are inundated by an average water level of 30 to 60 cm for about three months of the year.

Floodplain forests-riverine areas: Sites which are periodically flooded by the Gummi and Gojeb Rivers were also assessed. These floodplains are temporarily inundated during the rainy season from June to September, but flash floods also occur in the montane rainforest areas. In both cases the inundation period is comparably short (less than a month) and the water level oscillates between 30 cm and 1 m.

For this assessment sampling sites were selected focussing on forests and wetlands/riverines. The sites are listed in Table 3. Further details including geographical location of sampling sites can be found in the individual taxa reports.

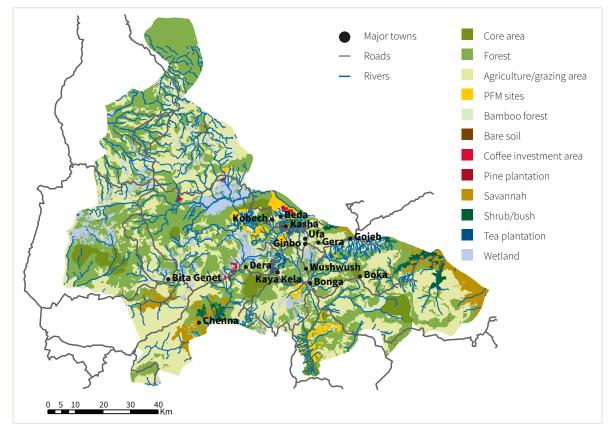


Figure 17: Sampling areas

Woreda (administrative disctrict)	Area/site name		
Gimbo	Gojeb Wetland		
Gimbo	Gojeb River/Arguba Investment Area (River/floodplain forests)		
Gimbo	Alemgono Wetland/Alemgono Village		
Gimbo	Shorori Wetland and Quarry		
Gimbo	Komba Forest (Afromontane) and Quarry		
Gimbo	Dadiban Hot Springs (direction to Medabo)		
Gimbo	Yartachi		
Gimbo	Masha Malo Forest		
Gimbo	Wushwush		
Gimbo	Kejaraba		
Gimbo	Arguba		
Adiyo	Boka Wetland		
Adiyo	Boka Forest (Chefahanna; Afromontane)		
Adiyo	Shaka (Angiyo Kolla)		
Adiyo	Bamboo Forest, east of Boka		
Decha	Awurada Valley (Gummi River/Gummi Bridge (Anderach)) (Afromontane forest/riverine vegetation)		
Decha	Beha		
Decha	Mankira Forest (Afromontane)		
Gewata	Boginda Forest (Afromontane)		
Gewata	Saja Forest (Afromontane)		
Bonga	KDA Guesthouse		
Bonga	God's Bridge		
Bonga	Shera Village		

Table 3: Major sampling areas of the biodiversity assessment at the Kafa BR (details specified in individual reports)

3.3 Data collection and management

Data collection and management were largely based on expert experience and in reference to the first assessment. The data were partially complemented with the limited scientific literature available on Ethiopia and Kafa and information about similar habitats. In general, the data collection methods applied in the fieldwork followed standard protocols commonly used for these kinds of biodiversity assessments. They combine field observations, transect/plot walking and simple field gear like landing nets or collecting containers with modern tools and devices such as high-resolution microscopes or call recordings etc. Most teams worked during the day. Due to the lack of suitable laboratories in Ethiopia, most samples were pre-processed and exported to Europe for specific identification. Each researcher signed an agreement which obligates compliance with a number of criteria for exporting species to another country. Although the data collection and analysis processes differ between each taxon, the content and structure of the individual

reports have been standardised for better comparison between the results and comprehensive presentation of the information acquired. Further information on the sampling methods for each taxon can be found in the individual reports.

The experts started systematisation and analysis of the field data for species determination on-site in Bonga, so that only new species or those that were difficult to identify had to be exported. Many species such as fungi are still in the process of determination. During this process the preliminary species determinations were confirmed, rejected or corrected based on literature and (additional) expert knowledge.

In addition to the field data collection, all international experts conducted intense theoretical and practical field training on each taxon for NABU's rangers and other interested participants.

4. Summary of results

Through the follow-up assessment in the rainy season of 2019, NABU aimed to obtain comparable and new data on the status of biodiversity between years and seasons for specific taxonomic groups. Additionally, the follow-up assessment further developed the capacities of rangers and the local authorities which shall ensure a continuation of regular biodiversity monitoring at the Kafa BR without initiation and large-scale support by NABU.

Overall, the biodiversity assessment confirmed high biological diversity and an extremely high rate of endemism within the Kafa BR, reflected in high diversity at both the habitat level and the species number in each habitat. The identified habitats exhibit high heterogeneity despite the short distance between them. During the second assessment at least 515 species were recorded, of which at least 31 are new to science (mainly fungi and one amphibian species), and 276 are new to Ethiopia. 29 species were found endemic for Ethiopia. The highest biodiversity was found in core areas of the biosphere reserve such as Mankira and Komba Forests as well as in natural and semi-natural habitats in general.

The gathered data will be analysed and incorporated into the biodiversity monitoring scheme.

Highlights and detailed results of each taxon assessment can be found in the individual reports.

5. References

Bekele, T. (2003). The Potential of Bonga Forest for Certification: A Case Study. Paper prepared for the National Stakeholders Workshop on Forest Certification. Organized by the Institute of Biodiversity Conservation and Research (IBCR), FARM Africa and SOS Sahel. Addis Ababa, Ethiopia.

Bender, S. (2011). Saving the Wild Coffee Forests – Joint Forces for Kafa Biosphere Reserve in Ethiopia. In: Austrian MAB Committee (eds.) Biosphere Reserves in the Mountains of the World. Excellence in the Clouds? 88-92. Austrian Academy of Sciences Press, Vienna.

Bender-Kaphengst, S. & Tekle, M. (2019). Community Action for Biodiversity and Forest Conservation and Adaptation to Climate Change in the Wild Coffee Forests (CAFA). In: Leal Filho, W.; Barbir, J. & Preziosi, R. (Eds.). Handbook of Climate Change and Biodiversity. Springer Nature Switzerland AG, Basel.

Bridgewater, P.B. (2002). Biosphere reserves: Special places for people and nature. Environmental Science & Policy 5(1), 9-12. Elsevier BV, Amsterdam.

Chernet, T. (2008). Land Resources and socio-economic report of Bonga, Boginda, Mankira and the surrounding areas in Kaffa Zone, SNNPRS, Ethiopia. Report for PPP project on the establishment of a Coffee Biosphere Reserve in Bonga Region. Addis Ababa, Ethiopia. Davis A.P.; Gole, T.W.; Baena S. & Moat, J. (2012). The Impact of Climate Change on Indigenous Arabica Coffee (*Coffea arabica*): Predicting Future Trends and Identifying Priorities. PLoS ONE 7(11), e47981.

Dennis Moss Partnership (2009). Application for Nomination of Kafa Biosphere Reserve. South Africa (unpublished), Stellenbosch.

Dresen, E. (2011). Forest and Community Analysis. Final report. On behalf of NABU's project "Climate Protection and Preservation of Primary Forests – A Management Model using the Wild Coffee Forests in Ethiopia as an Example" (unpublished).

Dresen, E.; Tegetmeyer, C.; Mundt, F. & Dresen, M. (2015). Final Report – Mapping and analysis of wetlands and rivers at Kafa Biosphere Reserve. Final report submitted to NABU.

Dresen, E. (2014). Map "Habitat Types in Kafa Biodiversity Reserve" produced on behalf of NABU for NABU's biodiversity assessment.

EWNHS (Ethiopian Wildlife & Natural History Society) (2008). Rapid Biodiversity Assessment in Kafa Zone: The case of Mankira, Saja and Boka Forest. Prepared for FAO – Kafa Sustainable Land Management Project (SLM), Addis Ababa.

Gamachu, D. (1977). Aspects of Climate and Water Budget in Ethiopia. Addis Ababa University Press, Addis Ababa. Hein, L. & Gatzweiler, F. (2006). The economic value of coffee (*Coffea arabica*) genetic resources. Ecological Economics vol. 60, issue 1, 176-185. Elsevier BV, Amsterdam.

Ethiopian Biodiversity Institute (formerly Institute of Biodiversity Conservation) (2005). National Biodiversity Strategy and Action Plan. Government of the Federal Democratic Republic of Ethiopia.

Kassahun, T. & Bender, S. (2020). Food Security in the Face of Climate Change at Kafa Biosphere Reserve, Ethiopia. In: Handbook of Climate Services, pp 463-479. Springer International Publishing, Cham.

Million, B. & Leykun B. (2001). State of Forest Genetic Resources in Ethiopia. Forest Genetic Resources Working Papers, Co-publication of FAO, IPGRI/SAFORGEN, DFSC, ICRAF, Working Paper FGR/21E.

Mittermeier, R. A.; Robles Gil, P.; Hoffman, M.; Pilgrim, J.; Brooks, T.; Goettsch Mittermeier, C.; Lamoreux, J. & da Fonseca, G. A. B. (2004). Hotspots revisited. Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions. Mexico City.

The Nature and Biodiversity Conservation Union (NABU) (eds.) (2017). NABU's Biodiversity Assessment at the Kafa Biosphere Reserve. Berlin, Addis Ababa.

SNNPR (Southern Nations Nationalities and Peoples' Regional State) (2013). Kafa Zone Finance and Economic department (2005) e.c. (2012) zonal statistical abstract. (May, 2006) e.c. (2013).

Tadesse, G.; Zavaleta, E. & Shennan, C. (2014a). Coffee landscapes as refugia for native woody biodiversity as forest loss continues in southwest Ethiopia. In: Biological Conservation 169, 384-391. Elsevier BV, Amsterdam.

Tadesse, G.; Zavaleta, E.; Shennan, C. & FitzSimmons, M. (2014b). Policy and demographic factors shape deforestation patterns and socio-ecological processes in southwest Ethiopian coffee agroecosystems. In: Applied Geography 54, 149-159. Elsevier BV, Amsterdam.

WBISPP (Woody Biomass Inventory and Strategic Planning Project) (2004). Forest Resources of Ethiopia. MoARD, Addis Ababa. In: Bongers, Frans & Tennigkeit, Timm (editors) (2010). Degraded Forests in Eastern Africa: Management and Restoration (Earthscan Forest Library). Taylor & Francis Ltd., Abingdon.

Whitmore, T.C. (1993). Tropische Regenwälder – Eine Einführung. Spektrum Akademischer Verlag (SAV), Heidelberg/Berlin.

6. Annex

6.1 Photos

Figures 18-21: Regular briefings and field planning at NABU's Project Office in Bonga

Figure 18 (photo: NABU/Abdurazak Sahile)

Figure 19 (photo: NABU/Abdurazak Sahile)

Figure 20 (photo: NABU/Abdurazak Sahile)

Figure 21 (photo: NABU/Abdurazak Sahile)

Figures 22-27: Collection of field data and samples by the teams

Figure 22 (photo: Bernhard Walter)

Figure 23 (photo: Bernhard Walter)

Figure 24 (photo: Bernhard Walter)

Figure 25 (photo: NABU/Abdurazak Sahile)

Figure 26 (photo: NABU/Abdurazak Sahile)

Figure 27 (photo: NABU/Abdurazak Sahile)

Figures 28-33: Collection of field data and samples by the teams

Figure 28 (photo: NABU/Abdurazak Sahile)

Figure 29 (photo: NABU/Abdurazak Sahile)

Figure 30 (photo: NABU/Abdurazak Sahile)

Figure 31 (photo: NABU/Abdurazak Sahile)

Figure 32 (photo: NABU/Abdurazak Sahile)

Figure 33 (photo: NABU/Abdurazak Sahile)

Figures 34-37: Collection of field data and samples by the teams

Figure 34 (photo: NABU/Abdurazak Sahile)

Figure 36 (photo: Viola Clausnitzer)

Figure 35 (photo: NABU/Abdurazak Sahile)

Figure 37 (photo: Viola Clausnitzer)

Detailed reports

Andreas Gminder, Zinaw Asaye, Eskedar Asfaw and Habtamu Deribe

Highlights

- \rightarrow Within 10 sampling days, 350 samples have been collected in six different forests.
- → Approx. 280 species belonging to approx. 50 genera were recorded, most of which have not been reported before for Ethiopia.
- → At the time of publication, approx. 20-30 species are new to science. However, this number is expected to increase when determination of further species will be completed.
- → At Boginda Forest, Komba Forest and Mankira Forest a species community significant for natural forests with long-lasting habitat tradition was found.
- → The highest number of species not yet described seems to be linked to Bamboo Forest, followed by Mankira Forest.
- \rightarrow The highest biodiversity seems to be found at Komba Forest and Mankira Forest.
- → Species diversity at all sites is high when ground moisture is found, e.g. due to large trees or shrubs and herbs.

1. Introduction

The knowledge of fungi in tropical regions is worldwide far from being equivalent to the Mediterranean and to boreal regions of the northern hemisphere. Several scattered inventories of certain countries and areas exist, which usually consist of a commented list of fungi found over a certain period of years. Up to now, there is not a single publication dealing with deeper insights into the ecological needs of tropical fungi or with the decline (or increase) of certain species and the reasons for that. There is, therefore, a considerable need of thorough inventory of fungi in different tropical areas, and this inventory may serve as an important step towards a fundamental knowledge base on fungi in the tropics.

2. Materials and methods

2.1 Study area

The study sites are listed in Table 1. They include coffee forests (montane forests), bamboo forests and mountain cloud forests in a range between approx. 1,800 and 2,500 m a.s.l. which were visited during a 10-day-period.

2.2 Sampling methods

At each site all group members collected all fungi present. A few groups of wood-inhabiting fungi have been collected only selectively, e.g. Corticiaceae and Xylariales, as the aim of this study in the rainy season of 2019 was to focus on the terrestrial fungi, whereas the focus of NABU's first biodiversity assessment was on the wood-inhabiting fungi.

Fruit bodies of the fungi found were collected preferably in young and mature stages. Each collection was wrapped separately in order to avoid mixing and a paper sheet with an identifying number was enclosed.

2.3 Collection methods

Documentation

At the end of each field stay all collections were photographed for the documentation of colour and overall shape. To ensure the correct allocation, an identifier paper sheet for each collection was photographed at least once.

Characteristics that can only be recorded in a fresh and not in a dried state were noted. Such characteristics included colour changing, smell, taste or chemical reactions.

In some cases, microscopic characteristics visible in a vital state only were noted as well (e.g. in inoperculate ascomycetes).

Preparation

After the documentation the collections were placed on an electric dryer – together with the identifier label – and dried at a temperature of 30°C-40°C for approx. 24 hours.

Dried collections were stored in airtight plastic bags. For most of the agarics and some of the other fungi groups small samples for molecular analyses were stored in Eppendorf tubes (approx. 150 collections).

All collections were divided into two parts, one of which remained with the Ethiopian Biodiversity Institute (EBI).

2.4 Data analysis

Following the national regulations of the EBI, samples were properly prepared and exported to Germany, with the main objective to further identify the species and complete the species list.

At the time of publication, the analyses have not been fully concluded yet. Hence, this report gives a first overview of the fungi collected at the Kafa Biosphere Reserve (Kafa BR) during NABU's follow-up biodiversity assessment.

Table 1: List of study sites and characteristics

No.	Code	Area	Woreda	Habitat	Sites	No. of visits
1	AW	Bonga	Decha	Riverine vegetation	Awurada Valley	1
2	BA	Bonga	Adiyo	Bamboo Forest with Haggenia	Bamboo Forest	1
3	BK	Bonga	Adiyo	Bamboo Forest	Boka Forest	1
4	BO	Bonga	Gewata	Afromontane Forest, with palm ferns	Boginda Forest	1
5	КО	Bonga	Gimbo	Afromontane Forest	Komba Forest	3
6	MA	Bonga	Decha	Afromontane Forest	Mankira Forest	2
7	SHO	Bonga	Gimbo	Afromontane Forest	Shorori Forest	2

All approx. 150 Eppendorf tubes have undergone molecular analysis by Prof. Dr. Marco Thines at Senckenberg (Frankfurt/Main). The sequences of the internal described spacer (ITS) region had been gained by 10 February 2019, whereafter analysis of the molecular data began.

Morphological analyses have begun in November 2019 and will be continued successively. Determination of Polypores will be done in collaboration with Prof. em. Leif Ryvarden (University of Oslo), determination of corticoid species with Dr. Viacheslav Spirin (University of Helsinki) and determination of Xylariales with Prof. Dr. Marc Stadler (University of Braunschweig). For many other species or species groups the help of specialists will be necessary.

3. Results and discussion

3.1 Collection methods

Sampling method

The time schedule for the project allowed only one visit of relevant locations so that the installation of permanent plots was not possible. Convenience sampling was chosen as the sampling method, as this usually produces more data in a shorter time, especially in regions where no or limited data are available (Mueller et al., 2004). This way, approx. 40-50 collections were sampled on each excursion day and most of them were described, photographed and dried afterwards. This resulted in a total of 320 collections. As indicated above, the main focus in 2019 was on collecting terrestrial species, as the wood-inhabiting species had already been sampled intensely during the dry season of 2014.

The very large number of fungal species, especially in the tropics, would require collection in many more different habitats for years in order to get an impression of Ethiopia's fungal inventory.

3.2 Habitats

Bamboo Forest

At Bamboo Forest the main focus was on fungi occurring directly on bamboo culms or leaves. In addition, fungi occurring on dead branches, bark or wood of Hagenia were searched.

The total number of species was lower than in the Afromontane forests, which is above all due to the monotone structure of Bamboo Forest with a much lower number of ecological niches than in other forest types. On the other hand, the number of species occurring here only and in none of the other collecting sites was considerably larger. Some of the collections have already been identified and found to be identical or very similar to species from Asia. Nevertheless, the molecular data have already shown that at least some of them might be near related species of their own. This raises the idea that the Ethiopian bamboo forests have developed a high proportion of endemic species in fungi or species that are endemic for East Africa at least.

Afromontane Forests

To some extent, the mountain forests of Komba, Mankira and Shorori had a similar species composition, although each of these forests has its own characteristics.

Besides several interesting species which are probably new to science, a characteristic species composition of natural habitat indicators was found in each of these forests. These so-called CHEG¹ species groups are spread all over the world. Their occurrence in the mountain forests of the Kafa region indicates that their composition is still natural and that they have a long-lasting habitat tradition. The monitoring of the CHEG species can be regarded as a clue to controlling the conservation status of these forests.

3.3 Species/groups

When we tried to collect all groups of agarics, no special emphasis was laid on a certain group. As the inventory of fungi at the Kafa BR and for the whole of Ethiopia is just at the beginning, specialising on certain groups will be a task for the future.

A first overview of the established collections suggested that approx. 20-30 species at least are new to science, many are new to Africa. With the exception of the Polypores (Ryvarden, 1980 and later), no inventory of fungi in Ethiopia exists, so that most of the fungi once identified will be mentioned for Ethiopia for the first time.

¹ A collection of fungi, with members of the Clavariacaeae, Hygrocybe, Entolomataceae and Geoglossaceae (and sometimes adapted to CHEGD, additionally with Dermoloma) which are a "characteristic of less disturbed, unfertilised grasslands" (comp. Griffith et al., 2013)

4. Conclusions and recommendations for conservation and monitoring

4.1 Recommendations for conservation

It is mandatory for the conservation of these forests and the fungal flora within them that their resources be used extensively only. Especially the felling of trees and the felling of bamboo are changing the ecosystem considerably. Other threads are changes of the ground water level, which would change the forests completely, and, to a minor degree, grazing of cattle in the forests.

It is recommended to keep the ecosystems as balanced as possible, in particular when it comes to input of nutrients, changes in hydrology and intensified use of forests.

4.2 Suggestions for future studies

In order to learn about the richness of the Ethiopian fungal flora, more excursions and collecting trips are required. Above all, the forest ecosystems which are still natural or near natural should be monitored intensively in the next years in order to document the species richness in fungi in this area.

It is of vital importance to have Ethiopian people interested in the fungal flora (and not only in eating mushrooms) and willing to learn how to identify fungi. Therefore, university classes and cooperations are highly suggested.

5. References

Griffith, G.W.; Gamarra, J.G.-P.; Holden, E.M; Mitchel, D.; Graham, A.; Evans, D.A.; Evans, S.E.; Aron, C.; Noordeloos, M.E.; Kirk, P.M.; Smith, S.L.N.; Woods, R.G.; Hale, A.D.; Easton, G.L.; Ratkowsky, D.A.; Stevens, D.P. & Halbwachs, H. (2013). The International Conservation Importance of Welsh "Waxcap" Grasslands. Mycosphere 4(5), 969-984, doi 10.5943/mycosphere/4/5/10. Mueller, G.M.; Schmit, J.P.; Huhndorf, S.M.; Ryvarden L.; O'Dell, T.E.; Lodge, D.J.; Leacock, P.R.; Mata, M.M.; Umaña, L.; Wu, Q.-X. & Czederpiltz, D.L. (2004). Recommended protocols for sampling macrofungi. In: Mueller, G.M., Bills, G., Foster, M.S. (eds) Biodiversity of Fungi: Inventory and Monitoring Methods. Elsevier Academic Press, San Diego, pp 168-172.

Ryvarden, L. & Johansen, I. (1980). A preliminary polypore flora of East Africa. Fungiflora, Oslo.

6. Annex

6.1 Appendices

Appendix 1: List of collecting sites for species by date

Date	Code	Area	Woreda	Habitat	Sites
30/07/2019	КО	Bonga	Gimbo	Montane forests	Komba Forest
31/07/2019	AW	Bonga	Decha	Riverine vegetation	Gumi River
01/08/2019	ВА	Bonga	Adiyo	Bamboo forests	Bamboo Forest
02/08/2019	SHO	Bonga	Gimbo	Montane forests	Shorori
03/08/2019	МА	Bonga	Decha	Montane forests	Mankira Forest
04/08/2019	КО	Bonga	Gimbo	Montane forests	Komba Forest
05/08/2019	во	Boginda	Gewata	Montane forests	Boginda Forest
06/08/2019	ВК	Bonga	Adiyo	Montane forests	Boka Forest
07/08/2019	КО	Bonga	Gimbo	Montane forests	Komba Forest
10/08/2019	SHO	Bonga	Gimbo	Montane forests	Shorori
11/08/2019	МА	Bonga	Decha	Montane forests	Mankira Forest

Sins	Tayon	Wushwush KO 1 30/07/2019	Chiri (Awurada) AW 31/07/2019	Boka BA 01/08/201	Gimbo SHO 02/08/2019	Enderach MA 03/08/2019	Wushwush KO 2 04/08/2019	Boginda BO 05/08/2019	Boka BK 06/08/2019	Wushwush KO 1 07/08/2019	Gimbo SHO 10/08/2019	Enderach MA 11/08/2019
Agaricales	spec. 1						ETH-551					
Agaricales	spec. 2									ETH-599		
Agaricus	spec. 1				ETH-446							
Agaricus	spec. 2				ETH-928							
Agaricus	spec. 3				ETH-933							
Agaricus	spec. 4					ETH-501						
Agaricus	spec. 5						ETH-951					
Agaricus	spec. 6									ETH-595		
Aphyllophorales	spec. 1						ETH-527					
Aphyllophorales	spec. 2						ETH-528					
Aphyllophorales	spec. 3							ETH-547		ETH-604		
Armillaria	spec. 1			ETH-430								
Armillaria	cf. fusiceps						ETH-517			×	×	
Ascobolus	spec. 1			ETH-917								
Ascocoryne	spec. nov. ined.	ETH-911										
Ascomycetes	spec. 1			ETH-916								
Ascomycetes	spec. 2			ETH-437								
Ascomycetes	spec. 3			ETH-438								
Ascomycetes	spec. 4							ETH-569				
Ascomycetes	spec. 5							ETH-570				
Auricularia	brunneotomen- tosa					ETH-485						
Auricularia	delicata					ETH-529	×					
Basidiomycetes	spec. 1			ETH-444								
Bolbitius	spec. 1								ETH-575			
Botryobasidium	curtisii			ETH-480								
Calathella	spec. 1								ETH-576			

	Taxon	Wushwush KO 1 30/07/2019	Chiri (Awurada) AW 31/07/2019	Boka BA 01/08/201	Gimbo SHO 02/08/2019	Enderach MA 03/08/2019	Wushwush KO 2 04/08/2019	Boginda BO 05/08/2019	Boka BK 06/08/2019	Wushwush KO 1 07/08/2019	Gimbo SHO 10/08/2019	Enderach MA 11/08/2019
Calocera	spec. 1			ETH-920								
Campanella	spec.1	ETH-420										
Campanella	spec.2				ETH-465							
Campanella	spec.3						ETH-531					
Campanella	spec.4			×					ETH-583			
Campanella	spec. 5							ETH-561				
Chaetocalathus	cf. liliputianus	ETH-403				ETH-474						
Chaetocalathus	aff. liliputianus 1					ETH-503						
Chaetocalathus	aff. liliputianus 2					ETH-506						
Chlorophyllum	spec. nov.					ETH-487						ETH-xxx
Clavaria	cf. fragilis	ETH-901								ETH-594		ETH-xxx
Clavaria	spec. 1									ETH-591		
Clavicipitales	spec. 1					ETH-942						
Clavulinopsis	spec. 1	ETH-905										
Clavulinopsis	spec. 2			ETH-439								
Clavulinopsis	spec. 3									ETH-592		
Clavulinopsis	spec. 4									ETH-593		
Clitocella cf.	spec.							ETH-534				
Clitocybe cf.	spec.				ETH-467							
Clitopilus	cf. hobsonii 1			ETH-436								
Clitopilus	passeckerianus agg.					ETH-507		ETH-961			ETH-xxx	
Clitopilus	cf. hobsonii 2							ETH-542				
Conocybe	spec.				ETH-922							
Cookeina	colensoi	ETH-001					ETH-524			×		
Coprinopsis	spec.				ETH-940	ETH-461						
Coprinus	spec. 1	ETH-414										
Coprinus	cf. disseminatus	×			×	ETH-475						
Coprinus	cf. micaceus			ETH-434								

		Wushwush	Chiri (Awurada)	Boka	Gimbo	Enderach	Wushwush	Boginda	Boka	Wushwush	Gimbo	Enderach
KO 1 30/07/2019	KO 1 30/07/2		AW 31/07/2019	BA 01/08/201	SHO 02/08/2019	MA 03/08/2019	KO 2 04/08/2019		BK 06/08/2019	KO 1 07/08/2019	SHO 10/08/2019	MA 11/08/2019
spec. 2								ETH-548				
spec.										ETH-967		ETH-xxx
spec.1				ETH-440								
spec. 2				ETH-488								
spec.3				ETH-489								
spec. 4				ETH-482								
spec. 5				ETH-483								
spec. 6				ETH-484								
spec. 7						ETH-512						
spec. 8						ETH-513						
spec. 9						ETH-514						
spec. 10						ETH-515						
spec. 11								ETH-536				
spec. 12 ETH-564	ETH-564											
spec. 13 ETH-566	ETH-566								×			
spec. 14 ETH-584	ETH-584											
spec. 15 ETH-585	ETH-585											
spec. 16 ETH-586	ETH-586											
spec. 17 ETH-587	ETH-587											
spec. 18 ETH-588	ETH-588											
spec. 19 ETH-589	ETH-589											
spec. 20										ETH-603		
spec. 1						ETH-490						
spec. 2							ETH-521					
spec. 3									ETH-581			
cf. striatus						ETH-500	×					
spec. 1				ETH-481								
spec. 2					ETH-453							
spec.									ETH-966			

			Chiri (Awurada) AW	Boka BA	Gimbo SHO	Enderach MA		Boginda BO	Boka BK	Wushwush KO 1	Gimbo SHO	Enderach MA
Genus Cvstoleniota	Taxon	30/07/2019	31/07/2019 FTH-912	01/08/201	02/08/2019	03/08/2019	04/08/2019	05/08/2019	06/08/2019	07/08/2019	10/08/2019	11/08/2019
Dacrymyces	spec.			×								
Deconica	spec.			ETH-435								
Dennisiodiscus cf.	spec.			ETH-432								
Dermoloma	spec.1	ETH-909										
Dermoloma	spec.2	ETH-910										
Entoloma	spec.1	ETH-402										
Entoloma	spec.2	×				×	×			ETH-600		
Entoloma	spec.3				ETH-924							
Entoloma	spec.4					ETH-473				×		×
Entoloma	spec.5					ETH-944						
Entoloma	spec.6								ETH-965			
Favolaschia	thwaithesii	×										
Favolaschia	tonkinensis			ETH-429								
Flammulina	spec.1						ETH-952					
Flammulina	spec. 2								ETH-582			
Fomitiporia	cf. caryophylli				ETH-456							
Fomitopsis	carnea	ETH-400					×		×			
Galerina	marginata agg. 1				ETH-451							
Galerina	marginata agg. 2						ETH-556					
Galerina	spec.							ETH-961				
Geastrum	aff. triplex 1	×					ETH-517	ETH-537				
Geastrum	spec. 1				ETH-921							ETH-xxx
Geastrum	spec. 2				ETH-454		ETH-549					
Geastrum	cf. javanicum (114)				ETH-455	×						
Geastrum	spec. 3				ETH-932							
Geastrum	aff. triplex 2							ETH-954				
Geastrum	spec. 4						ETH-956					
Gerronema cf.	spec. 1	ETH-906										

Mathematical fragmentMathematical fragmentGeromonalisticSpecialFIH-413													
			Wushwush KO 1	Chiri (Awurada) AW	Boka BA		Enderach MA	Wushwush KO 2	Boginda BO	Boka BK	Wushwush KO 1		Enderach MA
	enus erronema cf.	Taxon spec. 2	30/07/2019	31/07/2019	01/08/201		03/08/2019	04/08/2019	05/08/2019 FTH-955	06/08/2019	07/08/2019		11/08/2019
spec. ETH-040 x <th< td=""><td>loiocephala</td><td>spec.</td><td></td><td></td><td></td><td>ETH-496</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	loiocephala	spec.				ETH-496							
spec 1ETH-424ETH-424ETH-424ETH-424ETH-424ETH-424ETH-424ETH-424ETH-424ETH-424ETH-424ETH-424ETH-424ETH-424ETH-524 <th< td=""><td>lutinoglossum</td><td>spec.</td><td>ETH-904</td><td></td><td></td><td>×</td><td>×</td><td>×</td><td></td><td></td><td>ETH-605</td><td>×</td><td>×</td></th<>	lutinoglossum	spec.	ETH-904			×	×	×			ETH-605	×	×
pec.2 ETH-4d2 ETH-4d2 ETH-4d3 ETH-4d3 ETH-4d3 ETH-4d3 ETH-4d3 ETH-3d3	Gymnopilus	spec. 1		ETH-424									
pec.3 trutable trutable </td <td>Gymnopilus</td> <td>spec. 2</td> <td></td> <td></td> <td>ETH-442</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Gymnopilus	spec. 2			ETH-442								
ppec1ETH-401ETH-341	Gymnopilus	spec.3					ETH-493						
9 pec.2FIH-541FIH-541FIH-5419 pec.3FIH-541FIH-541FIH-5419 pec.3FIH-419FIH-541FIH-5419 pec.3FIH-419FIH-541FIH-5469 pec.3FIH-419FIH-541FIH-5469 pec.3FIH-419FIH-419FIH-5469 pec.3FIH-419FIH-419FIH-4199 pec.3FIH-410FIH-419FIH-4191 pec.3FIH-419FIH-419FIH-4191 pec.3FIH-419FIH-419FIH-4191 pec.3FIH-419FIH-419FIH-4191 pec.3FIH-419FIH-419FIH-4191 pec.3FIH-419FIH-419FIH-419 <td>Gymnopus</td> <td>spec. 1</td> <td>ETH-401</td> <td></td>	Gymnopus	spec. 1	ETH-401										
pec.3FTH-3d1FTH-3d1pec.4FTH-3d1FTH-3d1FTH-3d1FTH-3d1pec.5FTH-413XXXXpec.1YFTH-413FTH-413YYpec.1FTH-413FTH-413FTH-413YYpec.1YFTH-413FTH-413YYpec.1FTH-413FTH-413YYYpec.1YFTH-413FTH-413YYpec.1FTH-914FTH-413YYYpec.1FTH-914FTH-413YYYpec.1FTH-914FTH-413YYYpec.1FTH-914FTH-914YYYpec.1FTH-914FTH-914YYYpec.1FTH-914FTH-914YYYpec.1FTH-914FTH-914YYYpec.1FTH-914FTH-914YYYpec.1FTH-914FTH-914YYYpec.1FTH-914FTH-914YYYpec.1FTH-914FTH-914YYYpec.1FTH-914YYYYpec.1FTH-914YYYYpec.1FTH-914YYYYpec.1FTH-914YYYYpec.1FTH-914YYYYpec.1FTH-914YY <t< td=""><td>Gymnopus</td><td>spec. 2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ETH-538</td><td></td><td></td><td></td><td></td></t<>	Gymnopus	spec. 2							ETH-538				
111	Gymnopus	spec. 3							ETH-541				
spec.5ETH-419xxxspec.1FTH-413ETH-434FTH-436FTH-436FTH-436spec.1FTH-434ETH-434FTH-436FTH-436spec.3FTHFTH-436FTH-436FTH-436spec.3FTHFTH-436FTH-436FTH-436spec.3FTHFTH-436FTH-436FTH-436spec.3FTH-3FTH-436FTH-436FTH-436spec.3FTH-3FTH-436FTH-436FTH-36spec.4FTH-30FTH-36FTH-36spec.3FTH-430FTH-36FTH-36spec.3FTH-430FTH-36FTH-36spec.3FTH-430FTH-36FTH-36spec.3FTH-430FTH-36FTH-36spec.3FTH-430FTH-36FTH-36spec.3FTH-430FTH-36FTH-36spec.3FTH-430FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36FTH-36FTH-36spec.3FTH-36<	Gymnopus	spec.4							ETH-546				
abec:b	Gymnopus cf.	spec. 5	ETH-419			×	×	×					
spec 1ETH-443 <th< td=""><td>Helotiales</td><td>spec.</td><td></td><td></td><td></td><td></td><td>ETH-509</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Helotiales	spec.					ETH-509						
pec.2pec.2cumeth-494cumeth-494spec.3FTH-408ETH-408FTH-408FTH-408spec.3FTH-918ETH-408FTH-408FTH-408spec.3FTFTH-418FTH-418FTH-418spec.1FTH-918FTH-418FTH-418FTH-418spec.1FTH-918FTH-418FTH-418FTH-418spec.1FTH-918FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1FTH-418FTH-418FTH-418FTH-418spec.1	Hemimycena	spec. 1			ETH-443								
FTH-498if pec.ETH-914ETH-492ETH-492ETH-492if pec.ETH-492ETH-492ETH-492ETH-492if pec.ETH-403ETH-425ETH-492ETH-492if pec.ETH-914ETH-426ETH-492ETH-492if pec.ETH-914ETH-412ETH-412Image: Second Secon	emimycena	spec. 2					ETH-494						
iii	Hemimycena	spec. 3					ETH-498						
f. spec.FIH-492a pec.ETH-402ETH-410P pec.spec.ETH-903ETH-410P pec.spec.ETH-410ETH-410P pec.spec.ETH-410ETH-410P pec.spec.ETH-410ETH-410P pec.spec.ETH-410ETH-410P pec.spec.ETH-410ETH-410P pec.spec.ETH-410ETH-410P pec.spec.ETH-410P pec.P pec.spec.ETH-410P pe	enningsomyces	spec.			ETH-914								
e bect: ETH-425 ETH-425 ETH-426 ETH-42	Hohenbuehelia cf.	spec.					ETH-492						
spec.1 ETH-903 spec.2 ETH-410 spec.2 ETH-410 concaage ETH-410 spec. Intervec spec.<	yaloscyphaceae	spec.			ETH-425								
spec.2 EtH-554 EtH-554 EtH-554 EtH-554 EtH-564 EtH-564 <th< td=""><td>/dropus</td><td>spec. 1</td><td>ETH-903</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	/dropus	spec. 1	ETH-903										
conica agg. ETH-410 spec. ETH-913 ETH-913 ETH-948 spec. ETH-948 ETH-948 ETH-9	/dropus	spec. 2						ETH-554					
spec. ETH-913 ETH-913 ETH-943 ETH-943 ETH-943 spec. ETH-946 ETH-946 ETH-943 ETH-943 ETH-943 subviride aff. ETH-946 V V V V V subviride aff. ETH-946 V V V V V subviride aff. ETH-946 V V V V V subviride aff. ETH-946 V V V V V V subviride aff. ETH-946 V V V V V V V subviride aff. ETH-947 V V V V V V subviride aff. ETH-942 V V V V V V subviride aff. ETH-942 V V V V V V subviride aff. V V V V V V V subviride aff.	ygrocybe	conica agg.	ETH-410										
spec. ETH-948 subviride aff. ETH-406 x x x subviride aff. ETH-406 x x x x spec. x x x x x <	ygrocybe	spec.			ETH-913								
subviride aff. ETH-406 X X X X X spec. ETH-52 ETH-597 ETH-597 ETH-597 spec. ETH-422 ETH-426 ETH-426 ETH-597 spec. ETH-426 ETH-469 ETH-469 ETH-532 spec. ETH-469 ETH-469 ETH-469 ETH-532	Hymenagaricus	spec.					ETH-948						
spec. ETH-597 spec. ETH-422 I	ypholoma	subviride aff.	ETH-406				×	×	×		×		×
spec. ETH-422 ETH-422 ETH-422 ETH-422 ETH-422 ETH-422 ETH-422 ETH-422 ETH-422 ETH-532	ypocreales	spec.									ETH-597		
cf.ticinense spec. ETH-469 ETH-469 ETH-532	Hypoxylon	spec.		ETH-422									
spec. ETH-469 spec.	ypoxylon	cf. ticinense										ETH-xxx	
spec.	actocollybia cf.	spec.				ETH-469							
	Lentaria	spec.							ETH-532				

Genus	Taxon	Wushwush KO 1 30/07/2019	Cniri (Awurada) AW 31/07/2019	Boka BA 01/08/201	Gimbo SHO 02/08/2019	Enderach MA 03/08/2019	Wushwush KO 2 04/08/2019	Boginda BO 05/08/2019	Boka BK 06/08/2019	Wushwush KO 1 07/08/2019	Gimbo SHO 10/08/2019	Enderach MA 11/08/2019
Lentinus	spec. 1				ETH-464							
Lentinus	spec. 2					ETH-504	×	×				
Lentinus	spec. 3						ETH-526	×				
Lentinus	spec.4									ETH-602		
Lepiota	ichthyospora spec. nov.				ETH-447							
Lepiota	spec. 1				ETH-449							
Lepiota	spec. 2				ETH-934							
Lepiota	spec. 3				ETH-935							
Lepiota	viola spec. nov.				ETH-938							
Lepiota	spec. 4				ETH-939							
Lepiota	spec. nov. aff. fuscovinacea											ETH-xxx
Leptoglossum cf.	spec.								ETH-571			
Leucoagaricus	aff. tangerinus											ETH-xxx
Leucocoprinus	spec.											ETH-xxx
Limacella	spec. nov.				ETH-468							
Lycoperdon	spec.							ETH-543				
Marasmiaceae	spec. 1				ETH-926							
Marasmiaceae	spec. 2				ETH-930							
Marasmiellus	spec. 1				ETH-937							
Marasmiellus	spec. 2	ETH-562										
Marasmius	spec. 1			ETH-427								
Marasmius	spec. 2				ETH-452							
Marasmius	spec. 3					ETH-486						
Marasmius	spec. 4					ETH-947						×
Marasmius	spec. 5							ETH-545				
Marasmius	spec. 6										ETH-xxx	
Melanotus	spec.						ETH-523					

		Wushwush KO 1	Chiri (Awurada) AW	Boka BA	Gimbo SHO		Wushwush KO 2	Boginda BO	Boka BK	Wushwush KO 1	Gimbo SHO	Enderach MA
Genus	Taxon	30/07/2019	31/07/2019	01/08/201	\$/2019	-	04/08/2019	05/08/2019		07/08/2019	10/08/2019	11/08/2019
Microglossum	spec.									ETH-606		
Micromphale cf.	spec.							ETH-535				
Micropsalliota	spec. nov. 1	ETH-418										
Micropsalliota	spec. nov. 2				ETH-925							
Micropsalliota	spec. nov. 3				ETH-927							
Micropsalliota	spec. nov. 4				ETH-466							
Micropsalliota	spec. nov. 5					ETH-941						
Micropsalliota	spec. nov. 6					ETH-943						
Micropsalliota	spec. nov. 7						ETH-959					
Morganella	spec.			ETH-915								
Mucronella	spec.							ETH-559				
Mutinus	zenkeri	×					×					
Mycena	spec. nov. aff. lazulina			ETH-428								
Mycena	spec. 1			ETH-918								
Mycena	spec. 2			ETH-919								
Mycena	spec. nov. aff. lazulina			ETH-445								
Mycena	spec. 3				ETH-441	ETH-471						
Mycena	pura agg.			ETH-476		ETH-477						
Mycena	spec. 4					ETH-945					ETH-XXX	
Mycena	spec. aff. hetera- cantha (214)							ETH-958				
Mycena	epipterygia agg.								ETH-578			
Mycena	spec. 5								ETH-579			
Mycena	spec. 6											ETH-xxx
Mycena	spec. 7											ETH-xxx
Mycena	spec. 8					ETH-946						
Ombrophila	spec.	ETH-907										

GenusLaxonAdditionDephalotusspec.EPezizacf. ampliataEPhaeomarasmiusspec.EPhaeomarasmiusspec.EPleurotusspec.EPleurotusspec.EPleurotus cf.spec.EPleurotus cf.spec.EPleurotus cf.spec.EPleurotus cf.spec.EPluteusspec.EPluteusspec.EPluteusspec.EPluteusspec.EPluteusspec.EPluteusspec.EPluteusspec.EPolyporaceae	<u>מ</u>		ETH-470 ETH-460	03/08/2019	04/08/2019	9102/80/60		6102/80/10	6102/80/01	9102/2019
ria cf. ampliata arasmius spec. s spec. 1 s spec. 1 s spec. 1 s spec. 1 s spec. 1 s spec. 1 spec. 1 aff. romellii spec. 1 spec. 1 spec. 1 spec. 1 spec. 1 spec. 1 spec. 1 spec. 2 spec. 2 spec. 1 spec. 1 spec. 2 spec. 2 spec. 2 spec. 2 spec. 2 spec. 3 spec. 3 spec. 4 spec. 3 spec. 4 spec. 5 spec. 2 spec. 2 spec. 1 spec. 3 spec. 1 spec. 3 spec. 2 spec. 2 spec. 1 spec. 3 spec. 1 spec. 3 spec. 2 spec. 1 spec. 3 spec. 3 spec. 1 spec. 3 spec. 4 spec. 3 spec. 3 spec. 4 spec. 3 spec. 3 spec. 4 spec. 3 spec. 3 spec. 4 spec. 4 spec. 4 spec. 4 spec. 4 spec. 4 spec. 5 spec. 4 spec. 5 spec. 4 spec. 5 spec. 4 spec. 5 spec. 4 spec. 4 spec			.TH-470 .TH-460		×		6102/00/00			
arasmius spec. spec. 1 s spec. 1 s spec. 1 s spec. 2 s spec. 3 s spec. 3 spec. 3 aff. romellii aff. romellii spec. 2 spec. 1 spec. 1 aceae spec. 1 aceae spec. 1 aceae spec. 2 spec. 3 spec. 1 aceae spec. 2 spec. 3 spec. 3 spec. 3 spec. 3 spec. 3 spec. 3 spec. 3 spec. 1 aceae spec. 2 spec. 3 spec. 4 spec. 3 spec. 3 spec. 3 spec. 3 spec. 3 spec. 3 spec. 3 spec. 3 spec. 4 spec. 3 spec. 4 spec. 3 spec. 4 spec. 5 spec. 4 spec. 4 spec. 5 spec. 4 spec. 5 spec. 4 spec. 4 spec. 5 spec. 4 spec. 4 spec. 4 spec. 4 spec. 5 spec. 4 spec. 4 spec. 5 spec. 4 spec. 4 spec. 4 spec. 5 spec. 4 spec. 4 spe			TH-470 TH-460				ETH-963			
rria spec. 1 s spec. 1 s spec. 1 s spec. 2 s cf. spec. 3 s cf. spec. 3 s cf. spec. 1 aff. romellii s spec. 1 s spec. 1 aceae spec. 1 aceae spec. 2 s spec. 3 aceae spec. 3 aceae spec. 4 aceae spec. 5 aceae spec. 5			TH-470 TH-460				ETH-580			
s spec. 1 s spec. 2 s cf. spec. 3 s cf. spec. 4 spec. 1 aff. romellii spec. 2 spec. 2 spec. 1 aceae spec. 1 aceae spec. 1 aceae spec. 2 spec. 3 spec. 3 spec. 3 spec. 3 spec. 3 spec. 4 spec. 5 spec. 5			TH-460							
s spec. 2 scf. spec. 3 scf. spec. 3 spec. 1 aff. romellii spec. 1 spec. 2 spec. 2 spec. 1 sceae spec. 1 aceae spec. 2 aceae spec. 2 aceae spec. 2 spec. 3 spec. 4 spec. 3 spec. 3 spec. 4 spec. 3 spec. 4 spec. 3 spec. 4 spec. 5 spec. 4 spec. 4 spec				×						
scf. spec. 3 scf. spec. 4 spec. 1 spec. 1 aff. romellii spec. 2 spec. 2 spec. 1 aceae spec. 1 aceae spec. 2 aceae spec. 2 spec. 3 aceae spec. 3 aceae spec. 3 aceae spec. 3 aceae spec. 3							ETH-568			
scf. spec.4 spec.1 aff.romellii spec.2 spec.3 reum spec.1 aceae spec.1 aceae spec.3 aceae spec.4 aceae spec.5				ETH-505						
spec. 1 aff. romellii spec. 2 spec. 3 spec. 1 sceae spec. 1 aceae spec. 2 aceae spec. 3 aceae spec. 3 aceae		Ш			ETH-522					
	ETH-415	ш								
			ETH-923							
				ETH-502	ХХХ					
					ETH-957					
						ETH-962				
				ETH-508						
				ETH-516						
					ETH-520					
					ETH-950					
						ETH-557				
Polyporaceae spec. 6						ETH-558				
Polyporaceae spec. 7 E ⁻	ETH-565									
Polyporaceae spec. 8								ETH-596		
Polyporaceae spec. 9									ETH-XXX	
Polyporus cf. dictyopus		ш	ЕТН-929							
Postia spec.					ETH-550					
Protomerulius africanus E ⁻	ETH-563				ETH-949					
Psathyrella spec. 1 E ⁻	ETH-407									
Psathyrella spec. 2 E ⁻	ETH-408									
Psathyrella spec. 3 E ⁻	ETH-409									

			Chi.u.									
Genus	Taxon	Wushwush KO 1 30/07/2019	(Awurada) AW 31/07/2019	Boka BA 01/08/201	Gimbo SHO 02/08/2019	Enderach MA 03/08/2019	Wushwush KO 2 04/08/2019	Boginda BO 05/08/2019	Boka BK 06/08/2019	Wushwush KO 1 07/08/2019	Gimbo SHO 10/08/2019	Enderach MA 11/08/2019
Psathyrella	spec.4	ETH-413					×					
Psathyrella	spec. 5	ETH-421										
Psathyrella	spec. 6					ETH-495						
Psathyrella	spec. 7					ETH-497						
Psathyrella	spec. 8						ETH-553					
Psathyrella	aff. aberdarensis								ETH-572			
Psathyrella	aff. efflorescens											ETH-xxx
Psilocybe	spec.			ETH-433								
Pterula	spec. 1			ETH-431								
Pterula	spec. 2					ETH-472						
Pterula	spec. 3						ETH-953					
Pterula	spec. 4									ETH-598		
Pycnoporus	sanguineus				×	×	×					
Pyrenomycetes	spec.					ETH-525						
Sarcoscypha	javanense	×					ETH-555			ETH-xxx		
Sarophorum	spec.									ETH-590		
Schildia	spec. nov.						ETH-530					
Sclerotiniaceae	spec. 1	ETH-908										
Sclerotiniaceae	spec. 2							ETH-533				
Scutellinia	spec. 1	ETH-404										
Scutellinia	spec. 2	ETH-902										
Scutellinia	spec. 3					ETH-510						
Scutellinia	spec. 4						ETH-519					
Scutellinia	spec. 5							ETH-539				
Scutellinia	spec. 6							ETH-540				
Scutellinia	spec. 7								ETH-577			
Scytinopogon	spec.		ETH-423		ETH-450							
Sericeomyces	spec.								ETH-964			

Genus	Taxon	Wushwush KO 1 30/07/2019	Chiri (Awurada) AW 31/07/2019	Boka BA 01/08/201	Gimbo SHO 02/08/2019	Enderach MA 03/08/2019	Wushwush KO 2 04/08/2019	Boginda BO 05/08/2019	Boka BK 06/08/2019	Wushwush KO 1 07/08/2019	Gimbo SHO 10/08/2019	Enderach MA 11/08/2019
Steccherinum	spec.								ETH-573			
Stereum	spec. 1				ETH-457							
Stereum	spec. 2				ETH-463	×						
Stereum	spec. 3	ETH-567										
Strophariaceae	spec.	ETH-417										
Thelephoraceae	spec.				ETH-459							
Trametes	spec.				ETH-448							
Tremella	spec. 1				ETH-936							
Tremella	spec. 2							ETH-544				
Tremellales	spec.							ETH-960				
Trichoglossum	spec. 1	ETH-405								×	×	×
Trichoglossum	spec. 2									ETH-607		
Trichoglossum	spec. 3									ETH-968		
Trichoglossum	spec. 4											ETH-XXX
Tricholomopsis	cf. aurea			ETH-426		ETH-499				ETH-601		
Tricholosporum	spec.											ETH-XXX
Trogia	spec.										ETH-XXX	
Tubaria	spec.							ETH-560				
Typhula	spec.				ETH-931							
Volvariella	spec.					ETH-478						
Xanthagaricus	spec.				ETH-458							
Xeromphalina	spec.								ETH-574			
Xerorus	spec.					ETH-491						
Xylaria	spec. 1	ETH-412										
Xylaria	spec. 2	ETH-416										
Xylaria	spec. 3				ETH-462							
Xvlaria	sner 4					ETH-511						

6.2 Photos

Figure 1: Coniolepiota kafai (photo: Andreas Gminder)

Figure 2: Calathella digitiformis aff. at Boka Forest (photo: Andreas Gminder)

Figure 3: Komba Forest is one of the surveyed sites with the highest fungi biodiversity at the Kafa BR and for example inhabited by *Campanella* spec. cf. (photo: Andreas Gminder)

Figure 4: Clavaria fragilis was found at Mankira Forest (photo: Andreas Gminder)

Figure 5: Another fungi species which has been found in the biodiverse Mankira Forest: *Coniolepiota kafai* spec. (photo: Andreas Gminder)

Figure 6: *Cyanthus* spec. at Mankira Forest (photo: Andreas Gminder)

Figure 7: *Entoloma* spec. at Komba Forest (photo: Andreas Gminder)

Figure 8: *Geastrum schweinitzii* at Mankira Forest (photo: Andreas Gminder)

Figure 9: *Geastrum* spec. at Shorori Forest (photo: Andreas Gminder)

Figure 10: *Gymnopus* spec. at Komba Forest (photo: Andreas Gminder)

Figure 11: *Hypoxylon ticinense* cf. at Shorori Forest (photo: Andreas Gminder)

Figure 12: *Leotiomycetes* spec. at Boginda Forest (photo: Andreas Gminder)

Figure 13: A fungi species of the genus *Microglossum*, found at Komba Forest (photo: Andreas Gminder)

Figure 14: *Mycena* spec. at Bamboo Forest which seems to be linked to the highest number of fungi species not yet described (photo: Andreas Gminder)

Figure 15: *Mycena* spec. at Mankira Forest (photo: Andreas Gminder)

Figure 16: *Psathyrella* spec. at Boka Forest (photo: Andreas Gminder)

Figure 17: *Ramaria* spec. at Komba Forest (photo: Andreas Gminder)

Figure 18: A species of the genus *Trichoglossum*, which has not been fully analysed yet, was found at Komba Forest (photo: Andreas Gminder)

Figure 19: *Trigonosporum* spec. cf. at Komba Forest (photo: Andreas Gminder)

Dragonflies and damselflies (Odonata) of the Kafa Biosphere Reserve

Dr Viola Clausnitzer, Gebre Egzeabeher, Manaye Misganaw, Seid Muhammad, Teferi Paulos and Dr Klaas-Douwe B. Dijkstra

Highlights

- → A total of 57 Odonata (dragonflies and damselflies, hereafter referred to as "dragonflies") species from nine families was recorded in the two 2014 and 2019 surveys (this represents 53% of the 108 species certain to occur in Ethiopia and 90.5% of the Kafa Biosphere Reserve's confirmed dragon-fly fauna). In the 2014 survey just 33 species were found, so the 2019 survey resulted in a further 29 species which could be added to the biosphere reserve's total.
- → The Ethiopian endemic *Crenigomphus denticulatus* was recorded for the first time since 1962 and is thus new to the Kafa Biosphere Reserve. *Pseudagrion sjoestedti* is new to Ethiopia.
- → A total of 63 dragonfly species from nine families has now been recorded at the Kafa Biosphere Reserve, with at least 75 expected in total.
- → Nine of the 12 species known to be endemic to Ethiopia are confirmed to be present at the Kafa Biosphere Reserve (*Pseudagrion guichardi*, *P. kaffinum*, *Crenigomphus denticulatus*, *Notogomphus cottarellii*, *N. ruppeli*, *Paragomphus crenigomphoides*, *Atoconeura aethiopica*, *Orthetrum kristenseni*, *Trithemis ellenbeckii*) as is one subspecies (*Palpopleura jucunda radiata*). Another endemic (*Elattoneura pasquinii*) is almost certain to occur, while suitable habitat may also be present for the final two (*Ischnura abyssinica*, *Crenigomphus abyssinicus*). Among the species that were present and that have a limited distribution outside Ethiopia are *Pinheyschna waterstoni* (also in western Sudan) and *Notogomphus lecythus* (also in western Kenya).
- → Seven species are globally at risk of extinction according to the IUCN Red List of Threatened Species (five Vulnerable, two Endangered), while one is Near Threatened. All of these species except the near endemic *Pinheyschna waterstoni* are confined to Ethiopia.
- → Most endemic species were found in streams, usually flowing from natural bogs or forests, typically at an altitude between 1,600 and 2,600 m a.s.l. *Pseudagrion kaffinum* and *Crenigomphus denticulatus*, however, were found only along or near Gojeb River at about 1,300 and 1,550 m respectively.
- \rightarrow Lower lying areas, including ponds and rivers, harbour more species but fewer endemics.
- → The Ethiopian Highlander (*Atoconeura aethiopica*), Ethiopian Sprite (*Pseudagrion guichardi*), Cottarelli's Longleg (*Notogomphus cottarellii*) and Rüppell's Longleg (*N. ruppeli*) are used as monitoring species for habitat quality.
- → The results demonstrate the significance of the natural and semi-natural habitats at the Kafa Biosphere Reserve for conserving Ethiopia's biodiversity and endemics.

53

The Odonata Team (photo: Viola Clausnitzer; Klaas-Douwe B. Dijkstra)

1. Introduction

The insect order Odonata includes dragonflies and damselflies (hereafter referred to as "dragonflies" only), which all breed exclusively in freshwater habitats. Many species are sensitive to the disturbance of such sites and, therefore, are considered good indicators of anthropogenic change.

A survey of the Kafa Biosphere Reserve (Kafa BR) in December 2014 recorded only 33 dragonfly species in total, which is just over 30% of the species known from Ethiopia, while closer to 70% were considered likely to be present. The main recommendation of the report of the first biodiversity assessment was therefore to sample during the wet season in the boreal summer, which was done in August 2019.

This report details the results of the follow-up survey, undertaken in the first half of August 2019. Its goals were to (1) complete the list of species present; (2) obtain more data on the distribution and ecology of the localised and threatened species; and (3) provide training in the identification of the species, which are good flagships and indicators for conservation in the region.

Additional details on the research history, diversity, biogeography and ecology of Ethiopia's Odonata are provided in the previous report (Clausnitzer, 2017), as well as by Clausnitzer & Dijkstra (2005) and Consiglio (1978).

2. Materials and methods

2.1 Study area

The study sites listed in Table 1 cover all types of waters (headwaters, streams, rivers, wetlands, bogs, temporary pools) and landscapes (montane, bamboo, secondary and coffee forests, wooded savannah, grass-land, cultivated fields) available in the region from just under 1,300 m altitude to about 2,600 m a.s.l.

2.2 Sampling and collecting methods

Adult dragonflies were observed with binoculars and caught with butterfly nets, mostly between 10 am and 4 pm. Adults depend on warmth and sunshine for their activity, but despite frequent rain and often overcast days, we believe the lists for most sites are generally complete. In most cases, adults were identified in the field using Dijkstra & Clausnitzer (2014). Collected adults were put in acetone for a night, dried and then stored in paper envelopes. Dragonfly larvae were caught in the water using a kitchen sieve or scoop net and subsequently stored in alcohol.

The authors were supported by Gebre Egzeabeher Hailay (EBI), Manaye Misganaw (EBI), Abdu Siraj Abagaro (Ranger), Abera Hoeto (Ranger), Mitiku Gebremariam (Ranger), Seid Mohamed (Bonga University), Teferi Phaulos (Bonga University) while a few extra records were provided by Tom Kirschey and Hendrik Müller, members of the herpetological team.

No	Full survey	Position	Site	Date
1	yes	Between Bonga and Gimbo	Temporary pools in Shorori quarry	30/07/2019
2	yes	Between Bonga and Gimbo	Alemgono Wetland	30/07/2019
3	yes	Between Bonga and Gimbo	Shorori Wetland, stream and forest	30/07/2019
4	yes	Between Mera and Boka	Boka Forest bog and outflow stream	01/08/2019
5	yes	South-east of Boka	River in Bamboo Forest	01/08/2019
6	no		West of Konda	02/08/2019
7	no	Between Saja and Boginda	Road on descent to Gojeb	02/08/2019
8	yes	Between Medabo/Set and Boginda	Gojeb River and flooded areas	02/08/2019
9	yes	East of Saja	Wetland and stream on edge of Boginda Forest	02/08/2019
10	no	Between Konda and Medabo	Small river	03/08/2019
11	no	East of Enderach (Andracha)	Bridge on Gumi River	03/08/2019
12	yes	Between Konda and Chotio	North side of Gojeb Wetlands	03/08/2019
13	yes	South of Medabo and Set	East side of Gojeb Wetlands	03/08/2019
14	yes	Between Amiyo (Gojeb) and Arguba	Gojeb River and adjacent savannah	04/08/2019
15	yes	Between Dera (Dara) and Dimbra	Wetland and stream on edge of coffee forest	05/08/2019
16	yes	Between Dera (Dara) and Dimbra	Roadside stream	05/08/2019
17	yes	Between Dera (Dara) and Wushwush	Gravel pits in Komba Forest	05/08/2019
18	yes	West of Wushwush	Stream coming from Wushwush Tea Plantation	05/08/2019
19	no	Between Shaka and Kaka	Forest road	07/08/2019
20	no	South-east of Boka	Pool at edge of Bamboo Forest	07/08/2019
21	no	South-east of Tari	Roadside pools and drain	07/08/2019
22	yes	East of Enderach (Andracha)	Bridge on Gumi River	07/08/2019
23	yes	Between Tari and Felege Selam	Tributary of Gumi River	07/08/2019
24	no	Hill above the Guest House	Open-air museum south-east of Bonga	08/08/2019
25	yes	3 km south-east of Bonga	Forest clearing and swamp	08/08/2019
26	yes	Bonga town	Bonga town	09/08/2019
27	yes	Between Bonga and Awurada (Chiro)	Beha Wetland and its outflow, Kepi River	11/08/2019

Table 1: List of study sites, characteristics and survey dates

2.3 Data analysis

Samples were properly prepared and exported in accordance with the national regulations of the Ethiopian Biodiversity Institute (EBI), with the main objective of verifying identifications. Half the material remains at the EBI as a reference, while the exported material will be kept at the Naturalis Biodiversity Center in Leiden, The Netherlands.

Information on point localities and species is stored in an Excel datasheet and all information will be transferred to the Odonata Database of Africa hosted by Jens Kipping. The data will also be added to the IUCN Red List of Threatened Species. Basic analysis was done using functions in Excel.

3. Results and discussion

3.1 Diversity

The table in Appendix 2 provides details of the 108 dragonfly and damselfly species certain to occur in Ethiopia, with those recorded at or near the Kafa BR during the 2014 and 2019 surveys specified. Azuragrion nigridorsum and Orthetrum brachiale are best removed from the national list (see Dijkstra & Clausnitzer, 2014) pending confirmation, as they may have been confused with A. vansomereni and O. stemmale. A total of 57 species was found in the 2019 survey, i.e. 53% of those confirmed for Ethiopia, excluding a possible observation of Zosteraeschna ellioti but including larvae of a Paragomphus species, a sighting of an unidentified Phyllomacromia species, and the finding of wings (without body) of Gynacantha nigeriensis. This exceeds the total of 33 species found during the 2014 dry-season survey by 24 species, with 29 species added to the overall Kafa BR list.

The difference between the two surveys is explained partly by the season, as demonstrated by the appearance of species that are presumably widespread at the biosphere reserve like Africallagma elongatum, Anax speratus and Pinheyschna waterstoni, lotic species with a limited flight season like Notogomphus dorsalis and N. lecythus, and lentic species that need rainfall to form their temporary reproductive habitats like Pantala flavescens and Sympetrum fonscolombii. Nonetheless, we estimate that about two-thirds of the additions can be explained by the wider exploration of the region in the follow-up survey. Most notably, nine species were added in the relatively low-lying area (1,295-1,375 m a.s.l.) along Gojeb River near Arguba, including river specialists such as Mesocnemis singularis, Pseudagrion gamblesi, P. sjoestedti, Crenigomphus denticulatus and Brachythemis lacustris, as well as more generalist species like Ceriagrion suave, Pseudagrion hamoni, Orthetrum chrysostigma and Trithemis aconita. Indeed, this is the only place where a new species for Ethiopia was found (P. sjoestedti).

Other additions to the Kafa region are: Lestes tridens, Phaon iridipennis, Azuragrion vansomereni, Acisoma inflatum, Brachythemis impartita, Crocothemis sanguinolenta, Diplacodes lefebvrii, Diplacodes luminans, Orthetrum guineense, Orthetrum machadoi, Orthetrum monardi, Tramea basilaris, Trithemis kirbyi.

The five species definitively found in 2014 only were *Zosteraeschna ellioti, Gynacantha villosa, Palpopleura jucunda, Tetrathemis polleni* and *Zygonyx torridus.* The last two were seen only at the low-lying bottom (1,293 m a.s.l.) of Gumi Valley near Awurada, where it rained during our 2019 visit. Sightings of *Gynacantha villosa*

at several sites in 2014 (as well as *G. nigeriensis* at one), demonstrate that adults of this genus are best sought in the dry season, as they only seem present as larvae in temporary pools in the wet.

A total of 63 species is now confirmed for the Kafa BR, but at least 11 more are presumed present based on the proximity of records of the Ethiopian endemic *Elattoneura pasquinii* (see below) as well as the widespread Africallagma subtile, Agriocnemis exilis, Anaciaeschna triangulifera, Anax ephippiger, Gynacantha vesiculata, Paragomphus alluaudi, Phyllomacromia picta, Chalcostephia flavifrons, Orthretum hintzi and Zygonyx natalensis. Thus, the total number of species in the region should be at least 75 and possibly even 80 species.

3.2 Sites and habitats

By far the highest number of species recorded at any site was the 35 species from lower Gojeb River (site 14). This site is at lower elevation for the most part and has very high habitat heterogeneity of lentic and lotic habitats. Two sites which scored 16 species each were the Gojeb Wetlands (site 8) and temporary pools at Shorori (site 1). For most of the other sites fewer than four species were recorded, but this may partly be because the sampling intensity was different due to time and weather constraints.

Similar to the findings of Dijkstra & Clausnitzer (2005) and Clausnitzer (2017) the high proportion of endemic species is notable. The species number recorded for the Kafa BR could be raised tremendously, something that had already been suspected based on the report from the the first survey (Clausnitzer, 2017). The general pattern of a species-poor but endemic-rich fauna and flora is most likely a result of the area's geological history and present-day isolation. The Ethiopian Highlands have undergone heavy volcanism and climate changes, which might be responsible for the relatively high level of adaptiveness.

3.3 Species

The first survey recorded seven of the twelve species unique to Ethiopia, while fieldwork in March 2004 had found an eighth endemic and the follow-up assessment added a ninth.

Nine of the twelve species known to be endemic to Ethiopia are confirmed present at the Kafa BR, as is one subspecies, *Palpopleura jucunda radiata*. Four of these have a similar ecology, favouring (often swift) streams typically near a forest: *Pseudagrion guichardi* and *Atoconeura aethiopica*, both ranked Vulnerable on the IUCN Red List of Threatened Species, and Notogomphus cottarellii and N. ruppeli, both considered Endangered. All appear present from just under 1,600 to almost 2,600 m a.s.l. in the region, except N. ruppeli, which was not found below 1,900 m, neither there nor elsewhere in Ethiopia. The Near Threatened Paragomphus crenigomphoides may belong to this group, too. The only adult record (obtained in 2004) was near Wushwush at 1,845 m a.s.l., although possible larvae were found at 1,580 m a.s.l. in 2019. Recorded between 1,630 and 2,420 m a.s.l. in south-western Ethiopia, Orthetrum kristenseni has a similar altitudinal range but favours boggy pools. However, being much scarcer than its congeners O. caffrum, O. julia and O. stemmale at such habitats, it seems more sensitive to the heavy grazing and trampling impacts there, possibly relying on more natural bogs for its survival. Its current listing as Least Concern may therefore be somewhat optimistic.

The Vulnerable Pseudagrion kaffinum and Least Concern Trithemis ellenbeckii regionally have a lower and narrower altitudinal range, from 1,500 to 1,800 m a.s.l., as their preferred habitat of slower and more open streams and rivers occurs to be lower. Another endemic, the Vulnerable Elattoneura pasquinii, may occur with them. While not yet reported at the Kafa BR, it has been found between 1,610 and 1,650 m a.s.l., both to the east and north-west of the region. We are confident that it will be found, for example at Gojeb or its tributaries within the large Gojeb Wetland complex. Finally, multiple individuals of the Vulnerable Crenigomphus denticulatus were found among tall grass about 650 m from Gojeb River near Arguba, which flows at 1,295 m a.s.l. here. Although they may have emerged from one of the tributaries, larger rivers (Gojeb is 25 m wide here) are suitable for Crenigomphus species. The species was only known from three records in the 19th century and one in 1962 (Pinhey, 1982) and is new to the Kafa BR.

The two remaining species endemic to Ethiopia, the Near Threatened *Ischnura abyssinica* and the Vulnerable *Crenigomphus abyssinicus*, were not found during either survey. Most reliable records of the first are from open pools between 2,000 and 3,000 m a.s.l., so we suspect there is little suitable habitat in south-western Ethiopia. The second species is even more poorly known than *C. denticulatus*, with just a few specimens of mostly uncertain provenance, the last one collected in 1914 (pers. comm. J. Kipping).

Two additional species present at the Kafa BR have very limited ranges outside of Ethiopia. The Vulnerable *Pinheyschna waterstoni* is also known from Jebel Marra of western Sudan and probably occurs in a wide range of faster-flowing waters at the BR, from at least 1,300 to 2,600 m a.s.l. The Least Concern *Notogomphus lecythus* is also known from a small area of western Kenya. It was only recorded along Gojeb, but surveyed at both the lower (1,295 m a.s.l.) and higher (1,560 m a.s.l.) localities.

Ethiopia's endemics appear to be quite tolerant to human impacts, probably because they evolved in response to the highlands' constant climatic and geological changes. Indeed, some of the species may not be as threatened as their current Red List status suggests. Nonetheless, given the pressures on the remaining forests, we recommend monitoring of these endemic species. Furthermore, as observed above for *Orthetrum kristenseni*, species of open habitats may be more sensitive than often believed, due to the increasing pressures of lifestock on such sites.

4. Conclusions and recommendations for conservation and monitoring

4.1 Recommendations for dragonfly conservation

Deforestation and environmental degradation due to human disturbance, along with an increase in water pollution due to economic growth, even in remote areas, pose a major threat to Ethiopia's environmental health. Much of the natural landscape has been turned into agricultural land. Around 95% of Ethiopia's original forest has already been lost to agriculture and human settlements (Gordon & Carillet, 2003). As explained above, Ethiopia's endemic dragonflies are relatively tolerant to habitat disturbance. Still, even species adaptable to altered landscapes may disappear in the face of ongoing habitat change due to pollution, water extraction and reforestation with eucalypts.

The endemic species which require forested and clear rocky streams or rivers, such as the Ethiopian Sprite (Figure 1a), Cottarelli's Longleg (Figures 3a, b), Rüppell's Longleg (Figure 3c) and Ethiopian Highlander (Figure 4a) are of conservation concern and act as monitoring species for the core zones of the Kafa BR. Since they are easy to see and endemic to the montane habitats, the Ethiopian Highlander (Figure 4a), Ethiopian Skimmer (Figures 5a, b), Ethiopian Sprite (Figure 1a) and Kaffa Sprite (Figure 1b) are considered as flagship species for the Kafa BR.

Conservation efforts at the Kafa BR have thus largely focused on the threatened montane upland habitat, which explains why core zones have not yet been established in the wetlands. The huge wetlands of Gojeb River should be considered as a core zone, as well as the wetlands in the Afroalpine zone, i.e. beyond Boka Forest. Gojeb River especially, and streams draining into the Gojeb in the Arguba investment area, have a very high species diversity and there the endemic Little Talontail (*Crenigomphus denticulatus*) (Figure 2a and b) was recorded for the first time after its description over 60 years ago. This is only the second locality where it is known to occur and it might be considered as a flagship species for the lower habitats at the Kafa BR.

4.2 Suggestions for future studies

We currently have good data for the months of August (2019 survey) and December (2014 survey), as well as a few records from the authors' brief visit in March 2004. To complete the seasonal picture we suggest research in (1) April and May, as the start of the rains may be optimal for many of the lotic species; and (2) October, as the end of the rains may be the time when most lentic species emerge.

Concerning areal coverage, large parts of the west and the north of the Kafa BR have never been surveyed. It would be good to visit these regions as well. A detailed survey on the endemic species should be encouraged. This would allow the future monitoring of habitat quality.

5. References

For more reference on the odonatological history of Ethiopia consult Clausnitzer & Dijkstra (2005) and Clausnitzer (2017).

Clausnitzer, V. & Dijkstra, K.-D.B. (2005). The dragonflies (Odonata) of Ethiopia, with notes on the status of endemic taxa and the description of a new species. Entomologische Zeitschrift, Stuttgart. 115:117-130.

Clausnitzer, V. (2017). Dragonflies and damselflies (Odonata) at the Kafa Biosphere Reserve, pp.160-189, in: The Nature and Biodiversity Conservation Union (NABU) (2017) NABU's Biodiversity Assessment at the Kafa Biosphere Reserve. Berlin, Addis Ababa.

Consiglio, C. (1978). Odonata Collected in Ethiopia by the Expeditions of the Accademia Nazionale Dei Lincei.

I Introduction and the Zygoptera. Problemi Attuali di Scienza e di Cultura (III) 243:27-51.

Dijkstra, K.-D.B. & Clausnitzer, V. (2014). The Dragonflies and Damselflies of Eastern Africa: Handbook for all Odonata from Sudan to Zimbabwe. Studies in Afrotropical Zoology 298:1-264.

Gordon, F.L. & Carillet, J.-B. (2003). Ethiopia and Eritrea. Lonely Planet Publications, Melbourne.

Pinhey, E, (1982). Odonata collected in Ethiopia III. Anisoptera. Problemi Attuali di Scienza e di Cultura (III) 252:1-56. Accademia Nazionale Dei Lincei.

6. Annex

6.1 Appendices

Appendix 1: List of collecting sites in 2019 for dragonflies including locality information (see also Table 1)

No	Position	Survey date	Additional date	Altitude min (a.s.l.)	Altitude max (a.s.l.)	Latitude	Longitute
1	Between Bonga and Gimbo	30/07/2019	10/08/2019	1,690 m	1,700 m	7.36371088	36.21228409
2	Between Bonga and Gimbo	30/07/2019		1,710 m	1,720 m	7.361938	36.2219696
3	Between Bonga and Gimbo	30/07/2019		1,620 m	1,630 m	7.359440804	36.2060318
4	Between Mera and Boka	01/08/2019	07/08/2019	2,420 m		7.294794559	36.37634659
5	South-east of Boka	01/08/2019		2,620 m		7.240357876	36.45194626
6	West of Konda	02/08/2019		1,610 m		7.600477695	35.99933243
7	Between Saja and Boginda	02/08/2019				7.507861614	36.05672836
8	Between Medabo/Set and Boginda	02/08/2019		1,560 m		7.55403614	36.0593605
9	East of Saja	02/08/2019		2,130 m	2,140 m	7.501667023	36.09070206
10	Between Konda and Medabo	03/08/2019		1,575 m		7.573671818	36.03019333
11	East of Enderach (Andracha)	03/08/2019		1,575 m		7.20290947	36.28380585
12	Between Konda and Chotio	03/08/2019		1,580 m		7.593741417	35.97877121
13	South of Medabo and Set	03/08/2019		1,560 m		7.563093185	36.05007172
14	Between Amiyo (Gojeb) and Arguba	04/08/2019	06/08 and 12/08/2019	1,295 m	1,375 m	7.409640312	36.39720535
15	Between Dera (Dara) and Dimbra	05/08/2019		1,780 m		7.320901871	35.99799728
16	Between Dera (Dara) and Dimbra	05/08/2019		1,790 m		7.319906235	36.00978088
17	Between Dera (Dara) and Wushwush	05/08/2019		1,950 m		7.310642242	36.0759964
18	West of Wushwush	05/08/2019		1,910 m		7.307193279	36.12187195
19	Between Shaka and Kaka	07/08/2019		1,920 m		7.288095474	36.48557663
20	South-east of Boka	07/08/2019		2,665 m		7.243246555	36.4432106
21	South-east of Tari	07/08/2019		2,295 m		7.161600113	36.33116913
22	East of Enderach (Andracha)	07/08/2019	03/08 and 05/08/2019	1,575 m		7.202408314	36.28335953
23	Between Tari and Felege Selam	07/08/2019		1,580 m		7.122454643	36.38181305
24	Hill above the Guest House	08/08/2019		1,970 m		7.253574371	36.2634201
25	3 km south-east of Bonga	08/08/2019		1,940 m	1,980 m	7.247397423	36.27408981
26	Bonga town	09/08/2019		1,760 m		7.262025356	36.24902344
27	Between Bonga and Awurada (Chiro)	11/08/2019		1,900 m		7.180156708	36.20835876

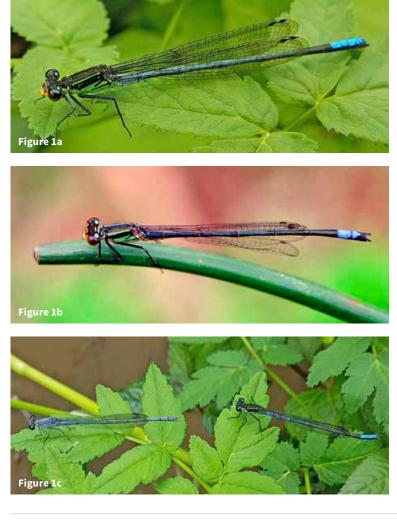
Appendix 2: List of the Odonata (dragonflies and damselflies) of Ethiopia according to literature studies and surveys by the authors, their Red List status and their occurrence at the Kafa BR; 1: recorded by the authors in 2004, 2014 or 2019, 2: literature record

Scientific name	Common name	IUCN Red List	Kafa BR	2014	2019
Zygoptera (Selys, 1854)					
Lestidae (Calvert, 1901)					
Lestes (Leach, 1815)	True Spreadwings				
Lestes tridens (McLachlan, 1895)	Spotted Spreadwing		1		1
<i>Lestes virgatus</i> (Burmeister, 1839)	Smoky Spreadwing		1	1	1
Lestes pallidus (Rambur, 1842)	Pallid Spreadwing				
Calopterygidae (Selys, 1850)					
Phaon (Selys, 1853)	African Demoiselles				
Phaon iridipennis (Burmeister, 1839)	Glistening Demoiselle		1		1
Chlorocyphidae (Cowley, 1937)					
Platycypha (Fraser, 1949)	Dancing Jewels				
Platycypha caligata (Selys, 1853)	Common Dancing Jewel		1	1	1
Platycnemididae (Yakobson & Bianchi, 1905)					
Elattoneura (Cowley, 1935)	African Threadtails				
Elattoneura pasquinii (Consiglio, 1978)	Ethiopian Threadtail	VU	2		
Mesocnemis (Karsch, 1891)	Riverjacks				
Mesocnemis singularis (Karsch, 1891)	Common Riverjack		1		1
Coenagrionidae (Kirby, 1890)					
Aciagrion (Selys, 1891)	Slims				
Aciagrion gracile (Sjöstedt, 1909)	Graceful Slim		1	1	1
Africallagma (Kennedy, 1920)	African Bluets				
Africallagma elongatum (Martin, 1907)	Elongate Bluet		1		1
Africallagma subtile (Ris, 1921)	Fragile Bluet		2		
Agriocnemis (Selys, 1877)	Wisps				
Agriocnemis exilis (Selys, 1872)	Little Wisp		2		
Agriocnemis inversa (Karsch, 1899)	Highland Wisp				
Agriocnemis sania (Nielsen, 1959)	Nile Wisp				
Azuragrion (May, 2002)	Sailing Bluets				
Azuragrion nigridorsum (Selys, 1876)	Sailing Bluet				
Azuragrion somalicum (Longfield, 1931)	Somali Bluet				
Azuragrion vansomereni (Pinhey, 1956)	Tiny Bluet		1		1
Ceriagrion (Selys, 1876)	Citrils				
Ceriagrion glabrum (Burmeister, 1839)	Common Citril		1	1	1
Ceriagrion suave (Ris, 1921)	Suave Citril		1		1
Ischnura (Charpentier, 1840)	Bluetails				
Ischnura abyssinica (Martin, 1907)	Ethiopian Bluetail	NT			
Ischnura senegalensis (Rambur, 1842)	Tropical Bluetail				
Proischnura (Kennedy, 1920)	Fork-tailed Bluets				
Proischnura subfurcata (Selys, 1876)	Fork-tailed Bluet		1	1	1
Pseudagrion (Selys, 1876)	Sprites				
Pseudagrion (Selys, 1876) (A-group)					
Pseudagrion gamblesi (Pinhey, 1978)	Great Sprite		1		1
· · · · · · · · · · · · · · · · · · ·					

Scientific name	Common name	IUCN Red List	Kafa BR	2014	2019
Pseudagrion guichardi (Kimmins, 1958)	Ethiopian Sprite	VU	1	1	1
Pseudagrion kaffinum (Consiglio, 1978)	Kaffa Sprite	VU	1	1	1
Pseudagrion kersteni (Gerstäcker, 1869)	Powder-faced Sprite		1	1	1
Pseudagrion salisburyense (Ris, 1921)	Slate Sprite				
Pseudagrion spernatum (Selys, 1881)	Upland Sprite		1	1	1
Pseudagrion (Selys, 1876) (B-group)					
Pseudagrion commoniae (Förster, 1902)	Black Sprite				
Pseudagrion hamoni (Fraser, 1955)	Swarthy Sprite		1		1
Pseudagrion massaicum (Sjöstedt, 1909)	Masai Sprite				
Pseudagrion niloticum (Dumont, 1978)	Nile Sprite				
Pseudagrion nubicum (Selys, 1876)	Bluetail Sprite				
Pseudagrion sjoestedti (Förster, 1906)	Variable Sprite		1		1
Pseudagrion sublacteum (Karsch, 1893)	Cherry-eye Sprite				
Pseudagrion torridum (Selys, 1876)	Wing-tailed Sprite				
Anisoptera (Selys, 1854)					
Aeshnidae (Leach, 1815)					
Anaciaeschna (Selys, 1878)	Evening Hawker				
Anaciaeschna triangulifera (McLachlan, 1896)	Evening Hawker		2		
<i>Anax</i> (Leach, 1815)	Emperors				
Anax ephippiger (Burmeister, 1839)	Vagrant Emperor		2		
Anax imperator (Leach, 1815)	Blue Emperor		1	1	1
Anax speratus (Hagen, 1867)	Eastern Orange Emperor		1		1
<i>Gynacantha</i> (Rambur, 1842)	True Duskhawkers				
<i>Gynacantha nig</i> eriensis (Gambles, 1956)	Yellow-legged Duskhawker		1	1	1
Gynacantha vesiculata (Karsch, 1891)	Lesser Girdled Duskhawker		2		
<i>Gynacantha villosa</i> Grünberg, 1902)	Brown Duskhawker		1	1	
Pinheyschna (Peters & Theischinger, 2011)	Stream Hawkers				
Pinheyschna waterstoni (Peters & Theischinger, 2011)	Ethiopian Hawker	VU	1		1
Zosteraeschna (Peters & Theischinger, 2011)	Highland Hawkers				
Zosteraeschna ellioti (Kirby, 1896)	Highland Hawker		1	1	?
Gomphidae (Rambur, 1842)					
Crenigomphus (Selys, 1892)	Talontails				
Crenigomphus abyssinicus (Selys, 1878)	Ethiopian Talontail	VU			
Crenigomphus denticulatus (Selys, 1892)	Little Talontail	VU	1		1
Crenigomphus renei (Fraser, 1936)	Western Talontail				
Ictinogomphus (Cowley, 1934)	Tigertails				
Ictinogomphus ferox (Rambur, 1842)	Common Tigertail				
Notogomphus (Selys, 1858)	Tonglegs				
Notogomphus cottarellii (Consiglio, 1978)	Cottarelli's Longleg	EN	1	1	1
Notogomphus dorsalis (Selys, 1858)	Little Longleg		1		1
Notogomphus lecythus (Campion, 1923)	Northern Longleg		1		1
Notogomphus ruppeli (Selys, 1858)	Rüppell's Longleg	EN	1	1	1

Scientific name	Common name	IUCN Red List	Kafa BR	2014	2019
Paragomphus (Cowley, 1934)	Hooktails				
Paragomphus alluaudi (Martin, 1915)	Highland Hooktail		2		
Paragomphus crenigomphoides (Clausnitzer & Dijkstra, 2005)	Ethiopian Hooktail	NT	1		
Paragomphus genei (Selys, 1841)	Common Hooktail				
Macromiidae (Needham, 1903)					
Phyllomacromia (Selys, 1878)	African Cruisers				
Phyllomacromia pallidinervis (Förster, 1906)	Pale-veined Cruiser				
<i>Phyllomacromia picta</i> (Hagen in Selys, 1871) Phyllomacromia sp.	Darting Cruiser		2 1	1	1
Libellulidae (Leach, 1815)					
Acisoma (Rambur, 1842)	Pintails				
Acisoma inflatum (Selys, 1882)	Stout Pintail		1		1
Acisoma variegatum (Kirby, 1898)	Slender Pintail				
Atoconeura (Karsch, 1899)	Highlanders				
Atoconeura aethiopica (Kimmins, 1958)	Ethiopian Highlander	VU	1	1	1
Brachythemis (Brauer, 1868)	Groundlings				
Brachythemis impartita (Karsch, 1890)	Northern Banded Groundling		1		1
Brachythemis lacustris (Kirby, 1889)	Red Groundling		1		1
Brachythemis leucosticta (Burmeister, 1839)	Southern Banded Groundling				
Bradinopyga (Kirby, 1893)	Rockdwellers				
Bradinopyga strachani (Kirby, 1900)	Red Rockdweller				
Chalcostephia (Kirby, 1889)	Inspector				
Chalcostephia flavifrons (Kirby, 1889)	Inspector		2		
Crocothemis (Brauer, 1868)	Scarlets				
Crocothemis erythraea (Brullé, 1832)	Broad Scarlet		1	1	1
Crocothemis sanguinolenta (Burmeister, 1839)	Little Scarlet		1		1
Diplacodes (Kirby, 1889)	Perchers				
Diplacodes lefebvrii (Rambur, 1842)	Black Percher		1		1
Diplacodes luminans (Karsch, 1893)	Barbet Percher		1		1
Hemistigma (Kirby, 1889)	Piedspots				
Hemistigma albipunctum (Rambur, 1842)	African Piedspot				
Nesciothemis (Longfield, 1955)	Blacktails and Peppertails				
Nesciothemis farinosa (Förster, 1898)	Eastern Blacktail		1	1	1
Orthetrum (Newman, 1833)	Skimmers				
Orthetrum abbotti (Calvert, 1892)	Little Skimmer		1	1	1
Orthetrum brachiale (Palisot de Beauvois, 1817)	Banded Skimmer				
Orthetrum brevistylum (Kirby, 1896)	Three-striped Skimmer				
Orthetrum caffrum (Burmeister, 1839)	Two-striped Skimmer		1	1	1
Orthetrum chrysostigma (Burmeister, 1839)	Epaulet Skimmer		1		1
Orthetrum guineense (Ris, 1910)	Guinea Skimmer		1		1
<i>Orthetrum hintzi</i> (Schmidt, 1951)	Dark-shouldered Skimmer		2		

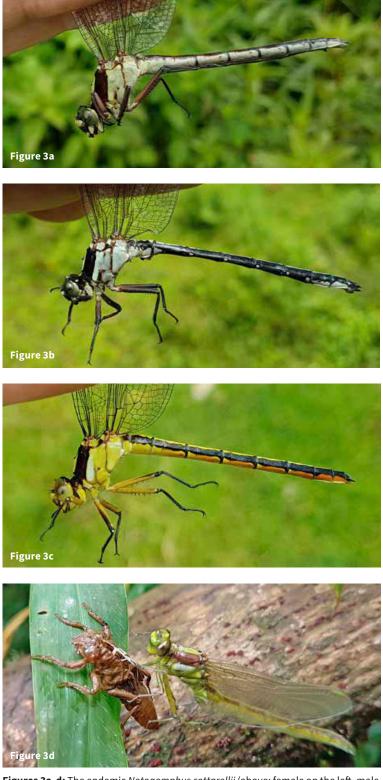
Scientific name	Common name	IUCN Red List	Kafa BR	2014	2019
Orthetrum julia (Kirby, 1900)	Julia Skimmer		1	1	1
Orthetrum kristenseni (Ris, 1911)	Ethiopian Skimmer		1	1	1
Orthetrum machadoi (Longfield, 1955)	Highland Skimmer		1		1
Orthetrum monardi (Schmidt, 1951)	Woodland Skimmer		1		1
Orthetrum sabina (Drury, 1770)	Slender Skimmer				
Orthetrum stemmale (Burmeister, 1839)	Bold Skimmer		1	1	1
Orthetrum trinacria (Selys, 1841)	Long Skimmer				
Palpopleura (Rambur, 1842)	Widows				
Palpopleura deceptor (Calvert, 1899)	Deceptive Widow				
Palpopleura jucunda (Rambur, 1842)	Yellow-veined Widow		1	1	
Palpopleura lucia (Drury, 1773)	Lucia Widow		1	1	1
Palpopleura portia (Drury, 1773)	Portia Widow		1	1	1
Pantala (Hagen, 1861)	Rainpool Gliders				
Pantala flavescens (Fabricius, 1798)	Wandering Glider		1		1
Rhyothemis (Hagen, 1867)	Flutterers				
Rhyothemis semihyalina (Desjardins, 1832)	Phantom Flutterer				
Sympetrum (Newman, 1833)	True Darters				
Sympetrum fonscolombii (Selys, 1840)	Nomad or Red-veined Darter		1		1
Tetrathemis (Brauer, 1868)	Elfs				
Tetrathemis polleni (Selys, 1869)	Black-splashed Elf		1	1	
Tholymis (Hagen, 1867)	Twister				
<i>Tholymis tillarga</i> (Fabricius, 1798)	Twister				
Tramea (Hagen, 1861)	Saddlebag Gliders				
<i>Tramea basilari</i> s (Palisot de Beauvois, 1817)	Keyhole Glider		1		1
<i>Tramea limbata</i> (Desjardins, 1832)	Ferruginous Glider				
Trithemis (Brauer, 1868)	Dropwings				
Trithemis aconita (Lieftinck, 1969)	Halfshade Dropwing		1		1
<i>Trithemis annulata</i> (Palisot de Beauvois, 1807)	Violet Dropwing				
Trithemis arteriosa (Burmeister, 1839)	Red-veined Dropwing		1	1	1
<i>Trithemis dejouxi</i> (Pinhey, 1978)	Stonewash Dropwing				
Trithemis donaldsoni (Calvert, 1899)	Denim Dropwing				
Trithemis ellenbeckii (Förster, 1906)	Ethiopian Dropwing		1	1	1
<i>Trithemis furva</i> (Karsch, 1899)	Navy Dropwing		1	1	1
Trithemis imitata (Pinhey, 1961)	Copycat Dropwing				
Trithemis kirbyi (Selys, 1891)	Orange-winged Dropwing		1		1
Trithemis stictica (Burmeister, 1839)	Jaunty Dropwing		1	1	1
Urothemis (Brauer, 1868)	Baskers				
Urothemis assignata (Selys, 1872)	Red Basker				
Urothemis edwardsii (Selys, 1849)	Blue Basker				
Zygonyx (Hagen, 1867)	Cascaders				
Zygonyx natalensis (Martin, 1900)	Blue Cascader		2		
Zygonyx torridus (Kirby, 1889)	Ringed Cascader		1	1	


0	-	D															ĺ											
Scientific name/ Site No	н	7	m	4	ю	9	7	ø	6	10	Ħ	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	Total Sites
Aciagrion gracile								×																				1
Acisoma inflatum														×			×											2
Africallagma elongatum		×					×	×					×	×	×		×	×				×	×	×				11
Anax imperator	×												×	×			×											4
Anax spec.				×																								1
Anax speratus	×							×		×				×														4
Atoconeura aethiopica			×	×												×		×	×			×	×		×			8
Azuragrion vansomereni														×			×											2
Brachythemis impartita											×																	1
Brachythemis lacustris														×														1
Brachythemis spec.																		×										1
Ceriagrion glabrum	×		×					×					×	×			×											9
Ceriagrion suave														×														1
Crenigomphus denticulatus														×														1
Crocothemis erythraea													×	×	×													e
Crocothemis sanguinolenta												×		×														2
Diplacodes lefebvrii																	×											1
Diplacodes luminans	×													×														2
Gynacantha nigeriensis		×																										1
Lestes tridens	×																×											2
Lestes virgatus		×	×					×					×				×											5
Mesocnemis singularis														×														1
Nesciothemis farinosa	×													×														2
Notogomphus dorsalis			×											×									×		×			4

Scientific name/Site No	H	2	m	4	ی ا	7	~	თ	1 0	1	13	13	14	15	16	17	18	19	20	21	22	23	24 2	25 2	26 27		Total Sites
Notogomphus cottarellii														×									×			2	
Notogomphus lecythus							×						×													2	
Notogomphus ruppeli				×																			×			2	
Notogomphus spec.				×				×									×									ŝ	
Orthetrum abbotti													×													1	
Orthetrum caffrum								×			×	×	×		×											2	
Orthetrum chrysostigma													×													1	
Orthetrum guineense		×										×	×													ŝ	
Orthetrum julia		×	×			×	×				×		×	×	×		×	×			×	×	×			13	m
Orthetrum kristenseni								×															×	~		2	
Orthetrum machadoi							×						×													2	
Orthetrum monardi	×																									-	
Orthetrum stemmale		×	×									×														ε	
Palpopleura lucia		×	×				×				×	×	×			×										7	
Palpopleura portia		×	×				×					×									×		×			9	
Pantala flavescens	×												×											×		c	
Paragomphus spec.																						×				Ч	
Phaon iridipennis							×																			1	
Phyllomacromia spec.													×													1	
Pinheyschna waterstoni				.,	×					×			×									×	×	~		ß	
Platycypha caligata			×				×				×		×				×				×	×			×	∞	
Proischnura subfurcata		×	×	×	×	×		×				×		×	×	×	×		×		×	×	×	~	×	16	(0
Pseudagrion gamblesi													×													Ч	
Pseudagrion guichardi				×				×							×		×					×	×	~		9	
Pseudagrion hamoni													×													Ч	
Pseudagrion kaffinum							×		×																	2	

Scientific name/ Site No	H	7	m	4	Ŋ	y	7	œ	6	10	11	12	13	14	15	16	17	18	19	50	21	52	23	24	25	26	27	Total Sites
Pseudagrion kersteni	×													×														2
Pseudagrion sjoestedti														×														1
Pseudagrion spernatum	×		×	×	×	×						×		×	×	×		×				×	×		×		×	14
Sympetrum fonscolombii	×												×													×		e
Tramea basilaris	×																											1
Trithemis werneri								×																				П
Trithemis aconita														×														_
Trithemis arteriosa	×													×														2
Trithemis ellenbeckii	×							×		×			×														,	4
Trithemis furva														×														Т
Trithemis kirbyi	×																											
Trithemis spec.																					×							1
Trithemis stictica	×							×				×																e
Zosteraeschna ellioti			×																									1
Total species per site	16	6	12	7	7	7	ε	16	ъ	e	2	7	13	35	9	9	10	6	5			-	10 1	Ч	11	5	e	

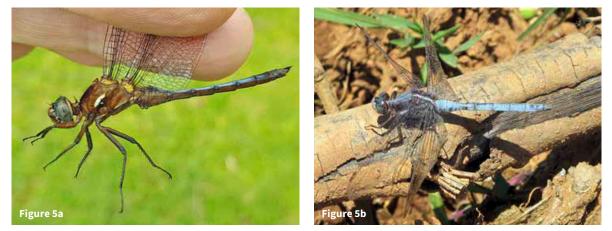
6.2 Photos



Figures 1a-c:

The endemic Sprite *Pseudagrion* guichardi (**a**) and *P. kaffinum* (**b**) are the most readily recognisable flagship spe-cies at the Kafa BR, as males of both have an orange labrum ('lip') and blue abdomen tip ('tail'). Pseudagrion guichardi is much larger than *P. Kaffinum* and occurs in higher elevations along clear and fast streams, while the Kaffa Sprite has been recorded from Gojeb River. Similar is *P. spernatum* (**c**, left species) which almost invariably occurs alongside *Pseudagrion* guichardi (**c**, right species), but is smaller and has no orange face. (photos: Viola Clausnitzer; Klaas-Douwe B. Dijkstra)

Figures 2a, b: The endemic Crenigomphus denticulatus (left female, right male) was recorded for the first time in 57 years. Its precise habits are unknown, but it may be a flagship species of large rivers like Gojeb. (photos: Viola Clausnitzer; Klaas-Douwe B. Dijkstra)


67

Figures 3a-d: The endemic *Notogomphus cottarellii* (above; female on the left, male on the right) and *N. ruppeli* (below; female on the left, male just after emergence from its larval skin on the right) are indicators of fairly natural streams. While the former is much larger than the latter, they are easily confused with each other and with *N. dorsalis* and *N. lecythus* when not closely examined. (photos: Viola Clausnitzer; Klaas-Douwe B. Dijkstra)

Figures 4a, b: The endemic *Atoconeura aethiopica* (**a**) is a flagship species of forested streams and rivers. Mature males are deceptively similar to the abundant *Orthetrum julia* (**b**) although that species will rarely perch on rocks by fast-flowing water (as seen on the left) and never has the thin central yellow line between the forewing bases and the 'neck'. (photos: Viola Clausnitzer; Klaas-Douwe B. Dijkstra)

Figures 5a, b: The endemic *Orthetrum kristenseni* is much scarcer at the Kafa BR than some other skimmer species and may thus be an indicator of relatively pristine bogs and wetlands. It should be separated with care from *O. caffrum* in which the second white stripe is usually more pronounced and the first stripe does not lie right against the spiracle, the dot-like opening on the side of the thorax. (photos: Viola Clausnitzer; Klaas-Douwe B. Dijkstra)

Amphibians of the Kafa Biosphere Reserve

PD Dr Hendrik Müller, Abeje Kassie, Tariku W/michael and Tom Kirschey

Highlights

- \rightarrow A total of 18 amphibian species from six different families were recorded.
- → Nine of the recorded species of amphibians are endemic to Ethiopia: *Leptopelis* cf. *ragazzi*, *Leptopelis* cf. *vannutellii*, *Leptopelis* sp., *Hemisus microscaphus*, *Afrixalus clarkei*, *Paracassina obscura*, *Phrynobatrachus minutus*, *Phrynobatrachus inexpectatus*, *Ptychadena erlangeri*.
- → One species of Tree Frog, genus *Leptopelis*, appears to be new to science and narrowly distributed within the Kafa Biosphere Reserve.
- → The previously undescribed tadpoles of *Afrixalus clarkei*, *Conraua beccarii*, *Leptopelis sp.*, *Phrynobatrachus minutus* and *Xenopus clivii* were collected and are being formally described.
- → Besides the already recognized flagship species, Beccari's Giant Frog (Conraua beccarii), Largen's Puddle Frog (Phrynobatrachus inexpectatus) and Clarke's Banana Frog (Afrixalus clarkei), the as yet undescribed Tree Frog, Leptopelis sp., would appear to make an ideal flagship species to highlight conservation needs and efforts at the Kafa Biosphere Reserve.
- → Within the Kafa Biosphere Reserve, Beccari's Giant Frog (Conraua beccarii) seems to be most dependent on forest habitats and would make the most suitable indicator species for forest and stream quality.
- → Wetlands within or close to natural forest and grassland areas showed the highest diversity and should receive conservation priority.

1. Introduction

In virtually every respect – biologically, culturally, historically - Ethiopia is a special place in Africa. Almost the entire country falls within two of Africa's eight recognized global biodiversity hotspots (30 in total worldwide). These are the Horn of Africa hotspot, which covers all of Ethiopia's north-eastern, eastern and southern lowlands, and the Eastern Afromontane hotspot, which comprises the Ethiopian highlands east and west of the Great Rift Valley (GRV). From an amphibian perspective, the Ethiopian highlands are by far the most diverse region and although Ethiopia is home to 'only' 72 species of amphibians, a number that seems comparatively small compared to other African countries, over 40% of these are endemic to Ethiopia (Largen & Spawls, 2010). Overall, the true diversity of Ethiopia's amphibian fauna is understood very insufficiently and severely undersampled, which is largely a result of the huge size of the country combined with an infrastructure which has been in a relatively poor state until recently. However, over the last decade, Ethiopia has seen a renewed interest in its amphibian fauna and surveys on a broader geographical scale have uncovered previously unrecognized diversity in several anuran groups (Reyes-Velasco et al., 2018a,b) and new species are being described (Gouette et al., 2019).

At the same time, the Ethiopian highland is one of the most densely settled areas in Africa and the pressure on the environment is immense. Several species have experienced dramatic declines in the Bale Mountains (Gower et al., 2013) and, as a consequence, a number of endemics are critically threatened with extinction. The large-scale habitat modification and destruction, especially the clearing of forests for agriculture, dramatically increases the risk of extinction. This is especially the case in endemics which are distributed quite narrowly and in Ethiopia in particular, we currently run the risk of losing species before their discovery and description. In addition, for many species we lack even the most basic data on their ecology, which makes it in turn difficult to assess their habitat requirements etc., which forms the basis for any informed conservation measure. A case in point are larval anurans tadpoles - which are unknown for almost half of all known Ethiopian frog species.

In our survey, we addressed these issues by focussing on three main objectives. During the first survey a single specimen of an unusual and presumably undescribed Tree Frog (Leptopelis sp.) was discovered (Kirschey, 2017). The single specimen was juvenile, which precluded an assessment of its taxonomic status. Finding and assessing this potentially new species was a main objective of our work. In addition, we targeted larval amphibians in particular. The identities of many Ethiopian tadpoles are unknown. However, tadpoles are often rather conspicuous and easy to sample, which would make them potentially more suitable to target in surveys than adults (Müller, 2019). That potential is currently not realized because of our insufficient knowledge of tadpole identities. In addition, we aimed to collect the little known Ethiopian endemic Caecilian Sylvacaecilia grandisonae, which had not been found in recent surveys conducted in south-western Ethiopia.

2. Materials and methods

2.1 Study area

The study sites are listed in Table 1. The study sites visited during the 12 working days included primarily sites already visited during the first assessment (e.g. coffee forests (montane forests), bamboo forests, secondary forests, riverbanks and wetlands). The field team consisted of Abeje Kassie, Admasu Assefa, Girma Kebede, Tariku Woldemichael and the two authors.

Table 1: Study sites and characteristics

Code	Area	Latitude	Longitude	Habitat	Site
BK1	Boka	7.291778	36.375889	Boka Wetland	Forest and stream within forest
BK2	Boka	7.291778	36.375889	Boka Wetland	Grassland and swampy sections
BK3	Boka	7.291778	36.375889	Boka, small roadside clay pit wetland	Waterfilled clay pit next to road, border- ing natural fores
BK4	Boka	7.241139	36.452278	Bamboo Forest, Boka	River and small tributaries in bamboo forest
KO1	Komba	7.309861	36.067722	Komba Forest	Clear stream and surrounding natural forest
KO2	Komba	7.310306	36.075861	Komba Forest road- side quarry/clay pit	Small but relatively deep ponds next to the road in a former quarry
КОЗ	Komba	7.310306	36.075861	Large forest quarry	Large, partly flooded quarry inside for- est, bordering stream and natural forest
AL1	Alemgono	7.362472	36.220556	Alemgono Wetland	Large, grassy valley bottom with several ponds and swampy sections, surround- ed mostly by agricultural areas and degraded woodland
SH1	Shorori	7.360500	36.208444	Shorori quarry	Number of differently sized, waterfilled quarry and clap pits
SH2	Shorori	7.360500	36.208444	Shorori Wetland	Large, grassy swamp at valley bottom and surrounding coffee forest with small streams
GU1	Gumi	7.243306	36.409611	Gumi River near Bonga	Primary forest along the riverbanks and small tributary streams
G01	Gojeb	7.563889	36.101667	Meda Abo, Gojeb Wetland	

2.2 Sampling methods

The main sampling methods were visual encounter surveys (VES) where a targeted area and its microhabitats were systematically searched for amphibian and reptile specimens. This included searches of bushes and tree branches, leaf litter and other debris, turning over logs and generally walking through the habitat in search for specimens. Most searches were done during the day, but especially Boka Forest was also searched during the late evening and early night hours using head lamps or hand-held torches. However, due to logistic and administrative restrictions, it was not possible to extend searches beyond about 9.30 pm. This was somewhat unfortunate as most amphibians are most active at night, especially during the breeding season when we visited. For night searches we prioritized Boka in search of specimens of a putative new species of Leptopelis (3.1) and to also obtain potential data on its biology. In addition, we used dip netting in aquatic habitat to collect tadpoles and also aquatic species such as African Clawed Frogs (Xenopus). To sample burrowing amphibians and reptiles, and especially to sample Caecilians, we also dug the soil in various places in the forest (stream banks, around trees, between tree buttresses, under rotting vegetation/fallen logs) with a hoe. Sampling methods followed standard established practice (Heyer et al., 1994).

2.3 Data analysis

Following the national regulations of the Ethiopian Biodiversity Institute (EBI), samples were properly prepared and exported to Germany, with the main objective to further identify the species and complete the species list. Specimens were provisionally identified in the field using standard literature (e.g. Largen & Spawls, 2010; Channing et al., 2012, and references therein) and portable field equipment (Bresser Biorit ICD LL stereo microscope; hand-held magnifying lens). Adult and larval specimens were killed by administering a lethal dose of the anaesthetics MS222 (for larvae) or Orajel (for adults), fixed with formalin, and subsequently transferred to 70% ethanol. Prior to fixation, fresh tissue samples (liver, tail tips) were collected from selected specimen and stored in 99% ethanol for subsequent deoxyribonucleic acid (DNA) analyses. Tadpoles were anaesthetized and photographed using a small aquarium.

Since the specimens were exported to Germany, we have begun with the in-depth examination of the material. Some specimen identifications have been revised following more detailed examination using microscopy (Zeiss SteREO Discovery V12), this work is still ongoing. For selected specimens, DNA will be extracted from collected tissue samples and sequences of the 12S rRNA, COI, and/or 16S rRNA genes amplified and sequenced following standard procedures (Vences et al., 2005; Fouquet et al., 2007). Tadpoles will be staged followed Gosner (1960); standard measurements and labial tooth row formula are taken following Altig and McDiarmid (1999) and description of buccopharyngeal morphology follows Wassersug (1976). Drawings will be prepared with the aid of a camera lucida attached to a Zeiss V12 SteREO Discovery microscope. For inspection of the buccopharyngeal morphology, representative specimens will be dissected, dehydrated and critical point dried (Emitech K850 Critical Point Dryer), sputter coated (Emitech K500) with gold-palladium and investigated using a Phillips XL30 ESEM scanning electron microscope with a digital image capture system.

3. Results and discussion

3.1 Amphibia

We recorded 18 species of amphibians, although identification is still preliminary for some of them (see below). This represents 25% of the species reported for Ethiopia (72 in total; Amphibiaweb 2019). While this may sound like a comparatively small percentage, one has to bear in mind that Ethiopia is a large country characterized by a great diversity of habitats and strong regional endemism (Largen & Spawls, 2010). Considering south-western Ethiopia, our species tally represents about 70% of the species that could be expected within the forested highlands, which is a reasonable result in line with expectation given the length and nature of the survey.

3.1.1 Arthroleptidae

At several localities we collected Tree Frogs of the genus *Leptopelis* that were identified as either *L. ragazzii* or *L. vannutellii* (Figure 2). Both species are variable in coloration but otherwise very similar in their overall meristic and morphometric characteristics, including call and tadpole morphology (Largen, 1977; Channing et al., 2012; Tiutenko & Zinenko, 2019), which complicates a reliable identification. Traditionally, L. ragazzii has been considered to be restricted to the east of the GRV, whereas L. vannutellii was thought to occur only west of the GRV (Largen, 1977). Over the years, a number of studies have reported L. ragazzii also from west of the GRV (e.g. Largen & Spawls, 2010) and it was also reported from the Bonga area during the first assessment. A recent study (Reyes-Velasco et al., 2018b), however, provided well-supported evidence that L. vannutellii and L. ragazzii are indeed separated by the GRV, with the former restricted to the west and the latter to the east, which highlights the need for an in-depth revision of these two species. At present, we tentatively chose to report both species for the Bonga area, but this is preliminary at best.

No	Species	Family	Status
1	Leptopelis cf. ragazzi (Boulenger, 1896)	Arthroleptidae	VU, endemic
2	Leptopelis cf. vannutelli (Boulenger, 1896)	Arthroleptidae	VU, endemic
3	Leptopelis sp.	Arthroleptidae	not assessed, probably endemic to Kafa BR
4	Conraua beccarii (Boulenger, 1911)	Conrauidae	LC
5	Hemisus microscaphus (Laurent, 1972)	Hemisotidae	LC, endemic
6	Afrixalus clarkei (Largen, 1974)	Hyperoliidae	EN, endemic
7	Hyperolius cf. acuticeps	Hyperoliidae	Unknown
8	Hyperolius viridiflavus s.l. (Duméril & Bibron, 1841)	Hyperoliidae	LC
9	Hyperolius sp.	Hyperoliidae	Unknown
10	Paracassina obscura (Boulenger, 1895)	Hyperoliidae	LC, endemic
11	Phrynobatrachus minutus (Boulenger, 1895)	Phrynobatrachidae	LC, endemic
12	Phrynobatrachus inexpectatus (Largen, 2001)	Phrynobatrachidae	DD, endemic
13	Phrynobatrachus cf. natalensis (Smith, 1894)	Phrynobatrachidae	LC
14	Ptychadena erlangeri (Ahl, 1924)	Ptychadenidae	NT, endemic
15	Ptychadena mascareniensis (Duméril & Bibron, 1841)	Ptychadenidae	LC
16	Ptychadena neumanni (Ahl, 1924)	Ptychadenidae	LC
17	Ptychadena schillukorum (Werner, 1907)	Ptychadenidae	LC
18	Xenopus clivii (Peracca, 1898)	Pipidae	LC

Table 1: List of recorded amphibians

A far more exciting find was an adult specimen and several juvenile and metamorphic frogs as well as several series of tadpoles, of an apparently undescribed species of Leptopelis (Figure 1e). This species was already reported during the first assessment, based on a single specimen that was photographed but not collected at the time. The new material supports the first assessment in so far as it likely represented a new species. Unfortunately, despite repeated, systematic searches we only obtained a single adult specimen, which probably indicates a somewhat more cryptic lifestyle compared to the sympatric Leptopelis cf. ragazzii found at the same site. Morphologically, the putative new species is characterised by very conspicuous epidermal ridges and grooves that run along the dorsal and dorsolateral sides of the body in all examined metamorphosed specimens. In addition, the tadpoles tentatively assigned to this species differ in overall shape and the morphology of the oral disc from the L. cf. ragazzii found at the same locality (Figures 1d and e).

Moreover, the two species seem to be microspatially segregated in their breeding habitats and tadpoles of the new Leptopelis species were only found in small, isolated puddles within the swampy parts of the grassland and forest edge adjacent to the montane forest at Boka. In contrast, tadpoles of L. cf. ragazzi were restricted to stream habitats. We only recorded this species at two different localities, but fairly close to Boka. Further investigations (morphological and molecular) are currently underway to establish the specific identity of these specimens and describe them as new to science. If these specimens are confirmed as belonging to an undescribed species, which seems likely at present, it will appear to be narrowly distributed and should receive immediate attention and be targeted for conservation measures.

3.1.2 Conrauidae

Beccari's Giant Frog or Filfil Slippery Frog (Conraua beccarii) is the only member of this genus and family found in Ethiopia, where it occurs from south-western Ethiopia all the way up north to Asmara, Eritrea. Other members of the genus are exclusively found in West and Central Africa and include the well-known Goliath Frog (Conraua goliath). Conraua beccarii is the second largest species within the genus and also the largest frog known from Ethiopia. This species was only recorded as a tadpole from a stream in Komba Forest. Other streams where this species was collected in 2014 were too fast-flowing to be accessible for sampling. The tadpole of C. beccarii is currently undescribed but resembles other known tadpoles of the genus and can thus be unambiguously identified (Figures 1 and 5). It is highly adapted to fast-flowing streams and the presence of such habitats is likely a key requirement for the survival of the species. Beccari's Giant Frog is

reportedly widespread (Milto et al., 2015) and common in the general area of Bonga (Largen & Spawls, 2010), and currently listed as Least Concern by IUCN (2013). It should nonetheless be included in future monitoring efforts as it is likely a very important indicator species, given its dependence on forests and especially clear and fast-flowing streams for reproduction and its unlikely tolerance of large-scale forest degradation and deforestation. Species of Conraua are furthermore important in the West African bushmeat trade (e.g. Schäfer et al., 2019). At present, it is unknown whether C. beccarii are hunted in Ethiopia for human consumption, which may increase their vulnerability. As with other Conraua, very little is known about the general biology of this species, which, given its size, might perhaps resemble that of C. goliath (Schäfer et al., 2019).

3.1.3 Hemisotidae

We recorded several specimens of Hemisus from Komba Forest, Meda Abo/Gojeb, the Komba Forest quarry and Alemgono Wetland (from the last two localities only in the form of tadpoles). Two species of Hemisus are known from Ethiopia, the endemic H. microscaphus and the more widespread H. marmoratus (Largen & Spawls, 2010). An initial assessment in the field identified the metamorphosed specimens as *H. marmoratus*, which would have been a substantial range extension, but subsequent closer analysis revealed these to be the Ethiopian endemic H. microscaphus (Figure 3), which also fits better with our current understanding of the ecology and distribution of both species (Largen, 1997a). However, it also reveals H. microscaphus to be more variable in its meristic and morphometric characters than previously thought. At Alemgono and the roadside quarry in Komba Forest we collected tadpoles and a single metamorphic specimen, which indicates that this species metamorphoses at comparably very large sizes and undergoes only moderate post-metamorphic growth.

3.1.4 Hyperoliidae

Clarke's Banana Frog (*Afrixalus clarkei*) is an Ethiopian endemic with a relatively narrow distribution centred in the Bonga area (but perhaps more widespread than currently known, see Mertens et al., 2016; Foquet et al., 2019). As a follow-up to the first survey, we recorded this species from a number of additional localities, including more anthropogenically influenced sites like Alemgono, where it was not recorded in 2014. The tadpole of this species is also currently undescribed, but we obtained a number of specimens from Boka Swamp, where *A. clarkei* was particularly abundant (Figure 1a), and are currently preparing a formal description.

The Tree Frog genus *Hyperolius* is the most species-rich African anuran taxon and *Hyperolius* are found throughout almost the entire sub-Saharan African

continent (Schiøtz, 1999). One common species that we recorded from several localities is Hyperolius viridiflavus s.l., which comprises a number of species distributed through much of sub-Saharan Africa. Species delimitation among members of the complex is hampered by the extreme variability shown by members of this group and genetic data will need to be analysed as part of a geographically broader taxonomic revision of this group. The same applies to specimens of Hyperolius cf. acuticeps, which we recorded from a number of localities. These small Tree Frogs are part of the widespread nasutus group, the sole Ethiopian representative of which was until recently considered to be H. acuticeps. Channing et al. (2013), however, restricted H. acuticeps to Malawi and the status of Ethiopian populations is in need of revision. At the roadside quarry in Komba Forest, we also collected Hyperolius tadpoles that are currently undetermined (Figure 1c). These will be barcoded to determine their specific identity.

One species recorded for the first time during the follow-up survey is *Paracassina obscura*, a species and genus endemic to Ethiopia. *Paracassina obscura* is part of a group of ground-dwelling Tree Frogs, and as such is more difficult to sample in surveys as they are usually strictly nocturnal and fairly secretive. However, males emit a very characteristic advertisement call and the species also has very distinct tadpoles (Figure 1g). A record of *Kassina senegalensis* by Milto et al. (2016) might represent a misidentified *Paracassina obscura*. We recorded it from a number of different localities (see Appendix 1) and although it is primarily a forest-dwelling species, it seems to be rather adaptable and was found in a number of habitats which are considerably influenced anthropogenically.

3.1.5 Phrynobatrachidae

Puddle Frogs of the genus *Phrynobatrachus* are also found in most of sub-Saharan Africa and occur in a number of different habitats. One widespread species that was recorded at a number of different localities is *Phrynobatrachus natalensis*, a comparatively large and ecologically adaptable species. It was most prominent in Shorori and Alemgono Wetlands. Studies have shown that specimens currently assigned to *P. natalensis* comprise a species complex (Zimkus et al., 2010). Ethiopian populations of *P. cf. natalensis* undoubtedly represent an unnamed taxon (Zimkus et al., 2010), especially considering that the type locality of *P. natalensis* is Natal, South Africa.

The most widespread Puddle Frog within the Kafa Biosphere Reserve (Kafa BR) is *Phrynobatrachus minutus*, a small Ethiopian endemic, which was found in considerable numbers in almost all localities visited during this survey. As for many other Ethiopian species, the tadpole of *P. minutus* is currently unknown, but we collected a series of tadpoles that probably belong to this species (Figure 1f). Final confirmation via DNA evidence is currently outstanding. The presence of the second Ethiopian endemic Puddle Frog (P. Inexpectatus), which was reported for the first survey, could not be unambiguously confirmed at present. We collected some specimens at a single locality (a small roadside pond near Boka), which may represent *P. inexpectatus*, but further investigation is necessary to confirm this. The main problem here is the very small adult size of P. inexpectatus, which makes them difficult to distinguish from immature *P. minutus*. The recent discovery of a new and very distinct species of Phrynobatrachus (Guette et al., 2019) from Gura Ferda, south-western Ethiopia highlights that new species are likely to be discovered through fieldwork and a critical reassessment of specimens, especially in taxa such as Phrynobatrachus.

3.1.6 Ptychadenidae

A number of Rocket or Grass Frogs of the genus *Ptychadena* has been reported and described from Ethiopia (Largen, 1997b) and includes species endemic to Ethiopia and species that are far more widespread through other parts of Africa. *Ptychadena* are relatively conservative in their overall morphology, which complicates species identification. Also, several of the more widespread species, like *P. schillukorum* or *P. mascareniensis* are suspected or known to comprise a complex of cryptic species (e.g. Vences et al., 2004) and more revisionary work is needed on this group. We recorded a number of different species of *Ptychadena* that we tentatively assigned to the species recorded during the first assessment.

3.1.7 Pipidae

We recorded Xenopus clivii from several different localities as both adults and tadpoles (see Appendix 1). Like other species of Xenopus, X. clivii is strictly aquatic but adult and juvenile frogs are seemingly possible to migrate over considerable distances in order to colonise various aquatic habitats, from forest streams, rivers and wetlands, to a number of manmade ponds and other such structures, which makes it probably the most resilient local amphibian species provided it has access to aquatic habitats. As for other anurans, the tadpole of X. clivii has not been described so far. We obtained a number of tadpole specimens (Figure 1h) and a formal description is in preparation. A preliminary investigation revealed it to be very similar to other known tadpoles of Xenopus. This preliminary assessment also enabled us to document some natural history observations on the tadpoles of this species, including the first recorded predation by a Fishing Spider (cf. Nilus sp., Pisauridae; Figure 7).

4. Conclusions and recommendations for conservation and monitoring

4.1 Recommendations for amphibian conservation

The largest threats to Ethiopia's biodiversity appear to be deforestation and environmental degradation due to human disturbance, combined with a drastic increase in water pollution resulting from economic growth. These threats do not evenly affect all areas of the country, but are a factor even in remote areas. Around 95% of Ethiopia's original forest has already been cleared for agriculture and human settlements.

This is also apparent at the Kafa BR, where parts of the natural landscape have been turned into agricultural land. Especially the area around Boka seems largely deforested, and this seems to have occurred rather recently. Forest clearance particularly affects species that are primarily associated with this habitat. Even in areas where stands of forest are left intact, forest endemics are often severely impacted nonetheless because of a decline in water quality of the streams that these species depend on for reproduction.

This is particularly the case in the endemic Beccari's Giant Frog and the forest associated Tree Frog. Other species, such as Clarke's Banana Frog, the Ethiopian Banana Frog, the Ethiopian Dwarf Puddle Frog and Largen's Dwarf Puddle Frog are somewhat less dependent on streams for breeding but still require healthy, unpolluted wetlands for their continued survival. All these species are of conservation concern and could act as monitoring species for the core zones of the biosphere reserve.

Especially the Tree Frogs such as Leptopelis ragazzii, Leptopelis vannutellii and the newly discovered, undescribed species as well as the two Banana Frog species of the genus Afrixalus are relatively conspicuous and easily identified and can therefore act as flagship species for the Kafa BR. Beccari's Giant Frog (Conraua beccarii), is shy and difficult to collect, which makes working with this species more difficult. However, these large frogs cannot be confused with other species within the Kafa BR and their presence could simply be visually surveyed. They also have very conspicuous and easily identified tadpoles that should make it easier to monitor this species. Tadpoles might generally be more suitable for surveying at least some of the species of concern here. Tadpole-based surveys could also be carried out during the day, which could potentially increase the efficiency of amphibian survey and monitoring work within the Kafa BR, especially when carried out by local rangers.

Wetlands should be included in any future zonation work within the Kafa BR. If not already done, a protected zone should be established covering the huge wetlands of Gojeb River as well as the wetlands in the Afroalpine zone, e.g. beyond Boka Forest. Smaller, more intensively used wetlands such as Alemgono, however, are also vital for maintaining local amphibian diversity.

Globally, freshwater habitats are being disturbed, polluted and destroyed at an alarming rate, even though access to clean water is essential to human health, with the United Nations declaring it a fundamental human right in 2010. Freshwater habitats are some of the most threatened ecosystems on a global level. Even though wetlands only make up 1% of the Earth's land area, they contain 10% of all known species and provide ecosystem services valued at several trillion USD per year (Butchart et al., 2005). All over the world, more than half of all wetlands have been degraded, and more than two-thirds of our upland watersheds remain unprotected.

In general, protection for terrestrial ecosystems is much better than for wetlands, because conservation efforts mainly focus on large terrestrial mammals. Wetlands and their associated watersheds provide valuable ecosystem services such as water catchment, retention and purification, provide habitats for a large range of specialised flora and fauna and serve as important longitudinal and transversal corridors for dispersal of biota. Freshwater ecosystems and freshwater biodiversity are in great peril, and urgent measures are needed.

Wetlands need to be protected, and their status must be monitored. This is especially true for countries like Ethiopia, where the economy is growing while at the same time systems for wastewater do not exist, thus wetlands and their ecosystem services are significantly affected. Amphibians are among the most threatened taxa groups worldwide. Because of their joint aquatic and terrestrial ecology, amphibians in general are good indicators for freshwater and terrestrial habitats. The Kafa BR is one of the last remnants of Afromontane forest in Ethiopia, and only stronger conservation efforts for the cluster of wetlands and forests can secure a more favourable conservation status of endemic and typical herpetofauna assemblages.

4.2 Suggestions for future studies

One clear priority for future studies is the new Tree Frog species of the genus *Leptopelis* from the Boka area, once its status is confirmed. From our work so far, it seems to be associated with montane grassland and not occurring within the neighbouring indigenous forests. Montane grasslands are under particularly strong pressure from cattle grazing and other uses and are also dependent on the surrounding forests for regulating the water table. The new *Leptopelis* seems to be dependent on this type of habitat and we did not find it in other similar habitats outside the Boka area.

At present knowledge, it seems to be only narrowly distributed and would likely qualify for a high conservation status (Vulnerable, Endangered or Critically Endangered) following current IUCN assessment criteria (IUCN 2019). More and more targeted fieldwork is urgently needed to better understand its distribution and basic ecological needs to initiate informed conservation measures. Another priority should be the Aleku Caecilian, *Sylvacaecilia grandisonae. Sylvacaecilia grandisonae* is the only species of caecilian known to occur in Ethiopia, is an Ethiopian endemic, and holds a key position in our understanding of the evolution of higher Caecilians (San Mauro et al., 2014; Theska et al., 2019) because of its breeding biology. It was described as a new species by Taylor (1970) as a member of the West African *Geotrypetes* and subsequently transferred to the newly erected genus Sylvacaecilia by Wake (1987). Few additional specimens have been collected since Largen et al. (1972) obtained a series of specimens from a number of localities throughout south-western Ethiopia in the early 1970s. Over the last decade, concerted efforts have been made to relocate the species, but these have so far been unsuccessful (DJ Gower & SP Loader, pers. comm.). Given its singular status, efforts should be made to relocate this species. The most promising area for such efforts would be Komba Forest, which is one of the most extensive remaining stands of natural forest in the area.

Search efforts should include digging for the species in suitable habitats as well as a more people-focussed approach. We did interview people about the presence of *S. grandisonae*, with mixed and somewhat inconclusive results, but a directed search using a public awareness campaign is likely to be the most promising effort to relocate this species. Both *S. grandisonae* and the new Leptopelis would make excellent flag-ship species to raise awareness for and also promote the conservation goals and measures of NABU within the Kafa BR and Ethiopia in general.

5. References

Altig, R. & Mc Diarmid, R.W. (1999). Body plan – development and morphology. *In* Mc Diarmid, R. W.; Altig, R. (eds.), Tadpoles – the biology of anuran larvae, pp. 24-51. The University of Chicago Press, USA.

AmphibiaWeb. (2019). www.amphibiaweb.org University of California, Berkeley, CA, USA. Accessed 14/10/2019.

Butchart, S.; Dieme-Amting, E.; Gitay, H.; Raaymakers, S. & Taylor, D. (2005). Ecosystems and human well-being: Wetlands and water. Synthesis. Millennium Ecosystem Assessment. WRI, Washington D.C., p 68.

Channing, A.; **Rödel**, M.-O. & Channing, J. (2012). Tadpoles of Africa – The biology and identification of all known tadpoles in sub-Saharan Africa. Edition Chimaira, Germany. Channing, A.; Hillers, A.; Lötters, S.; Rödel, M.-O.; Schick, S.; Conradie, W.; Rödder, D.; Mercurio, V.; Wagner, P.; Dehling, J.M.; du Preez, L.H.; Kielgast, J. & Burger, M. (2013). Taxonomy of the super-cryptic *Hyperolius nasutus* group of long reed frogs of Africa (Anura: Hyperoliidae), with descriptions of six new species. Zootaxa 3620:301-350.

Fouquet, A.; Gilles, A.; Vences, M.; Blanc, M. & Gemmell, N.J. (2007). Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. PLoS ONE 2(10):e1109.

Foquet, R.; Kassie, A. & De Beenhouwer, M. (2019). Express Biodiversity Survey in Gura-Ferda Forest, Ethiopia. BINCO Express Report 8.0 Biodiversity Inventory for Conservation. Glabbeek, Belgium, 24 pp. **Gosner, K.L.** (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183-190.

Goutte, S. ; Reyes-Velasco, J. & Boissinot, S. (2019). A new species of puddle frog from an unexplored mountain in south-western Ethiopia (Anura, Phrynobatra-chidae, *Phrynobatrachus*). ZooKeys 824:53-70.

Gower, D.J.; Aberra, R.K.; Schwaller, S.; Largen, M.J.; Collen, B.; Spawls, S.; Menegon, M.; Zimkus, B.M.; de Sá, R.; Mengistu, A.A.; Gebresenbet, F.; Moore, R.D.; Saber, S.A. & Loader, S.P. (2013). Long-term data for endemic frog genera reveal potential conservation crisis in the Bale Mountains, Ethiopia. Oryx 47:59-69.

Grandison, A.G.C. (1978). The occurrence of *Nectophrynoides* (Anura: Bufonidae) in Ethiopia. A new concept of the genus with a description of a new species. Monitore zoologico italiano, N.S. Supplemento XI:119-172.

Heyer, W.R.; Donelly, M.A.; McDiarmid, R.W.; Hayek, L.-A.C. & Foster, M.S. (eds.) (1994). Measuring and Monitoring Biological Diversity – Standard Methods for Amphibians. Smithsonian Institution Press, Washington D.C., 364 p.

IUCN (2019). The IUCN Red List of Threatened Species. Version 2019-2. www.iucnredlist.org.

IUCN SSC Amphibian Specialist Group (2013). *Conraua beccarii*. The IUCN Red List of Threatened Species 2013: e.T58251A18390772. www.dx.doi.org/10.2305/IUCN. UK.2013-2.RLTS.T58251A18390772.en. Downloaded on 18/10/2019.

Kirschey, T. (2017). Herpetofauna (Amphibia, Reptilia) at the Kafa Biosphere Reserve. NABU's Biodiversity Assessment at the Kafa Biosphere Reserve. NABU, Berlin, 190-205.

Largen, M.J. (1997a). *Hemisus microscaphus* Laurent 1972, a little-known Ethiopian endemic (Amphibia Anura). Tropical Zoology 10:271-285.

Largen, M.J. (1997b). Two new species of *Ptychadena* Boulenger 1917 (Amphibia, Anura, Ranidae) from Ethiopia, with observations on other members of the genus recorded from this country and a tentative key for their identification. Tropical Zoology 10:223-246.

Largen, M.J. & Spawls, S. (2010). The Amphibians and Reptiles of Ethiopia and Eritrea. Edition Chimaira, Germany.

Largen, M.J.; Morris, P.A. & Yalden, D.W. (1972). Observations on the caecilian *Geotrypetes grandisonae* Taylor

(Amphibia Gymnophiona) from Ethiopia. Monitore Zoologico Italiano, Nueva Seria Supplemento IV 8:185-205.

Mertens, J.; Jocqué, M.; Geeraert, L. & De Beenhouwer, M. (2016). Newly discovered populations of the Ethiopian endemic and endangered *Afrixalus clarkei* Largen, implications for conservation. ZooKeys 565:141-146.

Milto, K.D.; Pestov, M.K. & Kirschey, T. (2016). Preliminary data on the batrachofauna of the Kafa Biosphere Reserve. Vestnik of St. Petersburg University Ser. 3 2016/3:100-106.

Müller, H. (2019). Description of the Tadpole of the Critically Endangered Ethiopian toad *Altiphrynoides osgoodi* (Amphibia: Anura: Bufonidae). Journal of Herpetology 53:218-223.

Reyes-Velasco, J.; **Manthey**, J.D.; **Bourgeois**, Y.; **Freilich**, X. & Boissinot, S. (2018a). Revisiting the phylogeography, demography and taxonomy of the frog genus *Ptychadena* in the Ethiopian highlands with the use of genome-wide SNP data. PloS ONE, 13(2), e0190440.

Reyes-Velasco, J.; **Manthey**, J.D.; **Freilich**, X. & Bois**sinot**, S. (2018b). Diversification of African tree frogs (genus *Leptopelis*) in the highlands of Ethiopia. Molecular Ecology, 27:2256-2270.

San Mauro, D.; Gower, D.J.; Müller, H.; Loader, S.P.; Zardoya, R.; Nussbaum, R.A. & Wilkinson, M. (2014). Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Molecular Phylogenetics and Evolution 73:177-189.

Schäfer, M.; Tsekané, S.J.; Tchassem, F.A.M.; Drakulić, S.; Kameni, M.; Gonwouo, N.L. & Rödel, M.-O. (2019). Goliath frogs build nests for spawning – the reason for their gigantism? – Journal of Natural History 53: 1263-1276.

Taylor, E.H. (1970). A new caecilian from Ethiopia. The University of Kansas Science Bulletin 48:849-854.

Theska, T.; Wilkinson, M.; Gower, D.J. & Müller, H. (2019). Musculoskeletal development of the Central African caecilian *Idiocranium russeli* (Amphibia: Gymnophiona: Indotyphlidae) and its bearing on the re-evolution of larvae in caecilian amphibians. Zoomorphology 138:137-158.

Tiutenko. A. & Zinenko, O. (2019). Tadpole of Leptopelis ragazzii (Boulenger, 1896), Shoa Forest Tree Frog (Anura, Arthroleptidae). Herpetozoa 32:51-55.

Vences, M.; Kosuch, J.; Rödel, M.-O.; Channing, A.; Glaw, F. & Böhme, W. (2004). Phylogeography of

Ptychadena mascareniensis suggests transoceanic dispersal in a widespread African-Malagasy frog lineage. Journal of Biogeography 31:593-601.

Wake, M.H. (1987). A new genus of African caecilian (Amphibia: Gymnophiona) Journal of Herpetology 21:6-15.

Wells, K.D. (2007). The Ecology and Behavior of Amphibians. University of Chicago Press, USA.

Wassersug, R.J. (1976). Oral morphology of anuran larvae: terminology and general description. Occasional Papers of the Museum of Natural History, the University of Kansas 48:1-23.

Zimkus, B.M.; Rödel, M.-O. & Hillers, A. (2010). Complex patterns of continental speciation: molecular phylogenetics and biogeography of sub-Saharan puddle frogs (*Phrynobatrachus*). Molecular Phylogenetics and Evolution 55:883-900.

6. Annex

6.1 Appendices

Appendix 1: Amphibians collected at the Kafa BR during the biodiversity assessment. *precise localities were not recorded because of unclear species identification

Family	Genus	Species	Endemic	BK1	BK2	BK3	BK4	KO1	K02	K03	ALI	SH1	SH2	GUI	601
Arthroleptidae	Leptopelis	cf. ragazzii	Е	1	0	0	1	0	0	0	0	0	0	1	0
	Leptopelis	cf. vannutellii	Е	0	0	0	0	1	0	1	0	0	0	0	0
	Leptopelis	sp.	Е	0	1	1	0	0	0	0	0	0	0	0	0
Conrauidae	Conraua	Beccarii		0	0	0	0	1	0	0	0	0	0	0	0
Hemisotidae	Hemisus	Microscaphus	Е	0	0	0	0	1	1	0	1	0	0	0	1
Hyperoliidae	Afrixalus	Clarkei	Е	1	1	1	1	0	0	0	1	0	0	0	0
	Hyperolius	cf. acutus		0	0	0	0	0	1	0	1	1	0	0	0
	Hyperolius	viridiflavus s.l.		0	0	0	0	0	1	1	1	1	1	0	0
	Hyperolius	sp.		0	0	0	0	0	1	0	0	0	0	0	0
	Paracassina	Obscura	Е	0	0	0	0	0	1	0	1	1	0	0	0
Phrynobatrachidae	Phrynobatrachus	Inexpectatus	Е	0	0	1	0	0	0	0	0	0	0	0	0
	Phrynobatrachus	Minutus	Е	1	1	1	0	0	0	0	1	0	1	0	0
	Phrynobatrachus	cf. Natalensis		0	0	0	0	0	0	0	1	1	1	0	0
Ptychadenidae*	Ptychadena	Erlangeri	Е												
	Ptychadena	Mascareniensis													
	Ptychadena	Neumanni													
	Ptychadena	Schillukorum													
Pipidae	Xenopus	Clivii		0	0	0	0	0	1	0	1	1	0	0	0

6.2 Photos

Figure 1: Tadpoles of (**a**) Afrixalus clarkei, (**b**) Conraua beccarii, (**c**) Hyperolius sp., (**d**) Leptopelis cf. ragazzi, (**e**) Leptopelis sp. Boka, (**f**) Phrynobatrachus cf. minutus, (**g**) Paracassina obscura, (**h**) Xenopus clivii, not to scale (photos: Hendrik Müller)

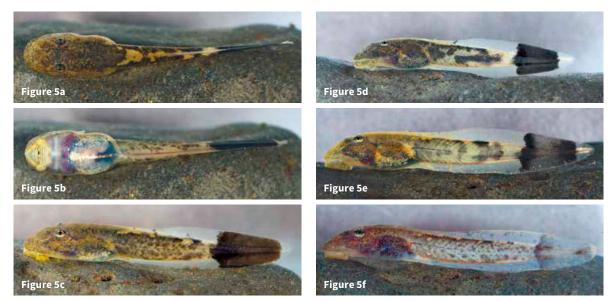

Figure 2: *Leptopelis vannutelli*, Komba Forest (photo: Hendrik Müller)

Figure 3: *Hemisus microscaphus*, Gojeb Wetland (photo: Hendrik Müller)

Figure 4: Eggs of *Hyperolius sp.*, Alemgono Wetland (photo: Hendrik Müller)

Figure 5: Tadpoles of *Conraua beccarii*, dorsal (**a**), lateral (**b**) and ventral (**c**) view of the same tadpole, (**d**) – (**f**) illustrate variation in pigment pattern, not to scale (photos: Hendrik Müller)

Figure 6: Eggs of *Ptychadena sp.* (large eggs) and *Phrynobatrachus natalensis* (small eggs), Shorori quarry (photo: Hendrik Müller)

Figure 7: Pisaurid spider with its prey, a *Xenopus clivii* tadpole (photo: Hendrik Müller)

Figure 8: Amplexus of Hyperolius *viridiflavus* s.l. (photo: NABU/Tom Kirschey)

Figure 9: Calling male of Hyperolius *viridiflavus* s.l. (photo: NABU/Tom Kirschey)

Figure 10: *Paracassina obscura* (photo: NABU/Tom Kirschey)

Figure 11: Afrixalus clarkei (photo: NABU/Tom Kirschey)

Birds of the Kafa Biosphere Reserve

Bernhard Walter, Kiros Welegerima Gerlass, Woldemariam Tesfahunegn, Dr Yodit Ayele, Mintesinot Shetachew and Dominic Kimani

Highlights

- ightarrow 179 bird species were recorded.
- ightarrow 26 species are restricted to the Afrotropical Highland biome.
- ightarrow Two species are restricted to the Somali-Masai biome.
- → Three species are endemic to Ethiopia: Abyssinian Longclaw, Abyssinian Catbird, Yellow-fronted Parrot.
- \rightarrow Nine species are endemic to Ethiopia and Eritrea.
- \rightarrow Six species are near endemic.
- \rightarrow 10 species are listed in the IUCN Red List of Threatened Species.
 - · Three species are Near Threatened: Crowned Eagle, Rouget's Rail, Abyssinian Longclaw.
 - Three species are Vulnerable: Tawny Eagle, Black Crowned Crane, Wattled Crane.
 - One species is Endangered: Lappet-faced Vulture.
 - Three species are Critically Endangered: Hooded Vulture, White-backed Vulture, Rüppell's Vulture.
- \rightarrow A breeding place of the critically Endangered Rüppell's Vulture was found.
- → A pair of the Wattled Crane and a larger group of the Black Crowned Crane (58 individuals) were found at Gojeb Wetland.
- \rightarrow Several flocks of the Yellow-fronted Parrot were found in different areas of the biosphere reserve.

1. Introduction

The first biodiversity assessment led by NABU in 2014 had already shown that the Kafa area has a rich birdlife. In only two weeks of investigation 178 bird species were found. The assessment took place in December, which is the dry season in Ethiopia and the time when many migratory birds from the Palearctic come for wintering in the region. The 2019 assessment

took place in August, which is the rainy season. The breeding time of many birds like Weavers, Widowbirds and Cuckoos is correlated with this time of the year when mating behaviour and nest-building activities are obvious. Compared to the 2014 assessment shifts in the composition of the avifauna were expected due to seasonality aspects.

2. Materials and methods

2.1 Study area

The study sites are listed in Table 1. Some of the sites, like Alemgono and Gojeb Wetlands and Bamboo Forest were the same as in the 2014 assessment. In addition, some new, promising places were selected for the current study. We investigated six forest areas, six wetlands and the acacia savannah near Arguba, representing a very different habitat type which is rare in the Kafa region (Table 1). The area around the Kafa Development Association (KDA) Guesthouse, which served as a base camp for most of the time, was included in the assessment.

Area	Site	Code	Habitat	Altitude (a.s.l.)	Latitude	Longitude
Gimbo	Kejaraba	KJ	Montane forest	1,879 m	7.262500	36.183333
Boginda	Path to the hot springs	во	Montane forest	1,813 m	7.459167	36.187222
Gewata	Gewata	GW	Riverine forest	1,409 m	7.473056	36.178889
Adiyo	Adiyo	AD	Montane forest	2,027 m	7.290556	36.475556
Adiyo	Bamboo Forest	BA	Bamboo Forest dominated by Arundinaria alpina	2,590 m	7.241111	36.452222
Adiyo	Chefahanna (Boka Forest)	BK	Wetland surrounded by montane forest	2,440 m	7.294722	36.378611
Gewata	Saja Forest (Gewata)	SF	Montane forest	2,139 m	7.506944	36.119444
Gimbo	Alemgono Wetland	AG	Wetland	1,722 m	7.361667	36.217778
Gimbo	Shoriri Wetlands	SHO	Wetland	1,615 m	7.358611	36.206389
Gimbo	Yartachi	YA	Farmland (maize); grassland riverine vegetation	1,327 m	7.403611	36.368889
Gimbo	Gojeb Wetland; Medabo	GOJ	Wetland, grazed and ungrazed areas	1,566 m	7.564167	36.051667
Bonga	KDA Guest House	KDA- GH	Village, farmland	1,738 m	7.250833	36.254444
Decha	Decha, Beha	DE	Wetland, riverine forest, coffee plantation	1,822 m	7.168889	36.220556
Gimbo	Arguba, Gimbo	AR	Grassland with Acacia trees, small riverine forest, Gojeb River	1,330 m	7.419722	36.395000

Table 1: List of study sites and characteristics

2.2 Sampling methods

The assessment was carried out in the rainy season from 30 July 2019 to 13 August 2019. In determination and naming we followed the field guide by Redman et al. (2009), supplemented by Clark & Davies (2018).

In forests with restricted access, small paths, game trails or roads were taken as transect trails. Most wetland counts were made from the higher ground of the peripheral areas of the wetlands. Whenever possible we also entered the wetlands. Start and end points were recorded using a hand-held Global Positioning System (GPS). For each bird species encountered during a walk, the number of individuals was recorded in order to yield a rough estimate of its frequency in the region. Surveys were conducted between 6 am and 7 pm. Birds were located by visual encounter using binoculars (10 x 40) or by means of their distinctive songs or calls. Unknown songs and calls were checked using recordings made with a mobile phone. Reference songs and calls were taken from www.xeno-canto.org in advance. In a few cases, we checked the identity of an unknown bird species via voice playback.

2.3 Data analysis

Information on bird abundance is normally derived from the number of specimens counted over a period of several days, or even weeks (Sutherland et al., 2005). As we visited most of our study sites only once, the methodology did not allow a reliable estimate of abundance. Unlike the first assessment, the current investigation took place in the rainy season, taking our understanding of the avifauna at the Kafa Biosphere Reserve (Kafa BR) a step further.

3. Results

3.1 Forest sites

We studied six different forest sites: Kejaraba (Table 2), the wooded areas at the path to the hot springs (Table 3), Gewata (Table 4), Adiyo (Table 5), Bamboo Forest (Table 6) and Saja Forest (Table 7). In nearly all the study sites there were clearings, small wetlands, farmland habitats, road edges with scrub or forest edge in addition to the closed forest areas. As a result, besides the forest species like White-cheeked Turaco, African Olive Pigeon or Sharpe's Starling we also encountered bird species that are not bound to forest habitats.

3.1.1 Kejaraba

Date: 31/07/2019, 6.20 am – 5.05 pm **GPS position:** Latitude 7.278889 / Longitude 36.213611; 1,646 m a.s.l. **GPS position:** Latitude 7.262500 / Longitude 36.183333; 1,879 m a.s.l. **GPS position:** Latitude 7.273333 / Longitude 36.205833; 1,734 m a.s.l. **Habitat:** forest edge, maize plantation and forest

Table 2: List of birds recorded at Kejaraba

Common name	Scientific name	Counted specimens	Remarks
Hadada Ibis	Bostrychia hagedash	2	
Wattled Ibis	Bostrychia carunculata	1	
Long-crested Eagle	Lophaetus occipitalis	1	
African Green Pigeon	Treron calvus	3	
Tambourine Dove	Turtur tympanistria	10	
Red-eyed Dove	Streptopelia semitorquata	2	
White-cheeked Turaco	Tauraco leucotis	15	
Red-chested Cuckoo	Cuculus solitarius	>10	
Black Cuckoo	Cuculus clamosus	2	

Common name	Scientific name	Counted specimens	Remarks
Klaas's Cuckoo	Chrysococcyx klaas	2	Observation of an immature Klaas's Cuckoo being fed by an African Paradise Flycatcher
Speckled Mousebird	Colius striatus	10	
African Pygmy Kingfisher	Ceyx pictus	1	
Crowned Hornbill	Tockus alboterminatus	>10	
Silvery-cheeked Hornbill	Bycanistes brevis	8	
Red-fronted Tinkerbird	Pogoniulus pusillus	5	
Double-toothed Barbet	Lybius bidentatus	5	
Banded Barbet	Lybius undatus	3	
Lesser Honeyguide	Indicator minor	1	
Cardinal Woodpecker	Dendropicos fuscescens	4	
Mountain Wagtail	Motacilla clara	2	
Black Cuckoo-shrike	Campephaga flava	1	One male
Red-shouldered Cuckoo-shrike	Campephaga phoenicea	2	Two males at different locations
Common Bulbul	Pycnonotus barbatus schoanus	5	
Mountain Thrush	Turdus olivaceus	10	
Grey-backed Camaroptera	Camaroptera brachyura	>20	
Abyssinian Slaty Flycatcher	Melaenornis chocolatinus	2	
African Dusky Flycatcher	Muscicapa adusta	>15	
African Paradise Flycatcher	Terpsiphone viridis	20	
Grey-headed Batis	Batis orientalis	2	
Black-headed Batis	Batis minor	2	
White-rumped Babbler	Turdoides leucopygia omoensis	4	Recorded at a maize plantation
Montane White-eye	Zosterops poliosgastrus	>15	
Copper Sunbird	Cinnyris cupreus	1	
Variable Sunbird	Cinnyris venustus	12	
Northern Puffback	Dryoscopus gambensis	>20	
Ethiopian Boubou	Laniarius aethiopicus	6	
Abyssinian Oriole	Oriolus monacha	6	
Thick-billed Raven	Corvus crassirostris	1	
Red-billed Oxpecker	Buphagus erythrorhynchus	5	
Sharpe's Starling	Pholia sharpii	>15	One group in canopy
Baglafecht Weaver	Ploceus baglafecht	1	
Bronze Mannikin	Lonchura cucullata	>10	
Black-and-white Mannikin	Lonchura bicolor	1	
Pin-tailed Whydah	Vidua macroura	1	
African Citril	Serinus citrinelloides	2	
Streaky Seedeater	Serinus striolatus	1	

3.1.2 Path to the hot springs

Date: 01/08/2019, 6.50 am – 12.40 pm **GPS position along a transect:** Latitude 7.440278 / Longitude 36.182222; 1,813 m a.s.l. Latitude 7.456389 / Longitude 36.187222; 1,746 m a.s.l. Latitude 7.462778 / Longitude 36.185000; 1,463 m a.s.l.

Table 3: List of birds recorded at the path to the hot springs

Habitat: montane forest, clearing, hot spring, small swamp, river and cultivated land

Remarks: a group of Blue Monkeys was observed at a group of Blue Monkeys was observed at Latitude 7.456389 / Longitude 36.187222, a group of De Brazza's Monkeys at Latitude 7.462778 / Longitude 36.185000

Common name	Scientific name	Counted specimens
Hadada Ibis	Bostrychia hagedash	13
White-backed Vulture	Gyps africanus	25
African Goshawk	Accipiter tachiro	1
African Green Pigeon	Treron calvus	7
Blue-spotted Wood Dove	Turtur afer	1
Tambourine Dove	Turtur tympanistria	3
Red-eyed Dove	Streptopelia semitorquata	1
Yellow-fronted Parrot	Poicephalus flavifrons	4
White-cheeked Turaco	Tauraco leucotis	5
Red-chested Cuckoo	Cuculus solitarius	2
Blue-headed Coucal	Centropus monachus	1
Speckled Mousebird	Colius striatus	3
Little Bee-eater	Merops pusillus	9
Crowned Hornbill	Tockus alboterminatus	1
Silvery-cheeked Hornbill	Bycanistes brevis	4
Red-fronted Tinkerbird	Pogoniulus pusillus	1
Eastern Grey-headed Woodpecker	Dendropicos spodocephalus	2
Common Bulbul	Pycnonotus barbatus schoanus	>10
Rüppell's Robin-Chat	Cossypha semirufa	4
Mountain Thrush	Turdus abyssinicus	2
Grey-backed Camaroptera	Camaroptera brachyura	>20
Northern Black Flycatcher	Melaenornis edolioides	2
African Dusky Flycatcher	Muscicapa adusta	3
African Paradise Flycatcher	Terpsiphone viridis	5
Brown-throated Wattle-eye	Platysteira cyanea	3
Montane White-eye	Zosterops poliosgastrus	6
Scarlet-chested Sunbird	Chalcomitra senegalensis	1
Variable Sunbird	Cinnyris venustus fazoqlensis	>10
Collared Sunbird	Hedydipna collaris	3
Northern Puffback	Dryoscopus gambensis	2
Ethiopian Boubou	Laniarius aethiopicus	3
Black-headed Oriole	Oriolus larvatus	4
Abyssinian Black-headed Oriole	Oriolus monacha	2
Sharpe's Starling	Pholia sharpii	>15
Spectacled Weaver	Ploceus ocularis	1

3.1.3 Way from the hot springs to Kobesh (Gewata)

Date: 01/08/2019, 12.50 pm - 4 pm **GPS position along a transect:** Latitude 7.473056 / Longitude 36.178889 **Habitat:** riverine forest, small wetland and montane forest

Table 4: List of birds recorded at the way from the hot springs to Kobesh

Common name	Scientific name	Counted specimens
Woolly-necked Stork	Ciconia episcopus	2
Hadada Ibis	Bostrychia hagedash	>10
White-backed Vulture	Gyps africanus	36
African Goshawk	Accipiter tachiro	1
Long-crested Eagle	Lophaetus occipitalis	1
African Green Pigeon	Treron calvus	7
Tambourine Dove	Turtur tympanistria	2
Red-chested Cuckoo	Cuculus solitarius	1
Woodland Kingfisher	Halcyon senegalensis	2
Blue-breasted Bee-eater	Merops lafresnayii	6
Wire-tailed Swallow	Hirundo smithii	1
Red-shouldered Coockoo-shrike	Campephaga phoenicea	1
Common Bulbul	Pycnonotus barbatus schoanus	1
Grey-backed Camaroptera	Camaroptera brachyura	>10
Ethiopian Cisticola	Cisticola lugubris	1
African Dusky Flycatcher	Muscicapa adusta	1
Scarlet-chested Sunbird	Chalcomitra senegalensis	1
Variable Sunbird	Cinnyris venustus fazoqlensis	2
Ethiopian Boubou	Laniarius aethiopicus	2
Sharpe's Starling	Pholia sharpii	8
Red-collared Widowbird	Euplectes ardens	1
Red-billed Firefinch	Lagonosticta senegala	6

3.1.4 Way to the vulture colony in Adiyo (Shaka)

Date: 02/08/2019, 7 am – 1 pm GPS position along a transect: Latitude 7.290556 / Longitude 36.475556 GPS position, view to a vulture colony: Latitude 7.295000 / Longitude 36.478889 Habitat: cultivated land, forest and riverine forest

Table 5: List of birds recorded at Adiyo

Common name	Scientific name	Counted specimens
Hadada Ibis	Bostrychia hagedash	1
Wattled Ibis	Bostrychia carunculata	5
White-backed Vulture	Gyps africanus	16
Rüppell's Vulture	Gyps rueppellii	33
Augur Buzzard	Buteo augur	12
Chestnut-naped Francolin	Pternistis castaneicollis	5

Common name	Scientific name	Counted specimens
African Olive Pigeon	Columba arquatrix	1
Lemon Dove	Aplopelia larvata	1
Yellow-fronted Parrot	Poicephalus flavifrons	2
Blue-breasted Bee-eater	Merops lafresnayii	5
Crowned Hornbill	Tockus alboterminatus	1
Red-fronted Tinkerbird	Pogoniulus pusillus	1
Double-toothed Barbet	Lybius bidentatus	5
Banded Barbet	Lybius undatus	3
Red-throated Wryneck	Jynx ruficollis	2
Abyssinian Woodpecker	Dendropicos abyssinicus	1
Red-rumped Swallow	Cecropis daurica	4
Mountain Wagtail	Motacilla clara	2
Black Saw-wing	Psalidoprocne pristoptera	>30
Common Bulbul	Pycnonotus barbatus	>10
Rüppell's Robin-Chat	Cossypha semirufa	1
African Stonechat	Saxicola torquatus	1
Mountain Thrush	Turdus abyssinicus	1
Tawny-flanked Prinia	Prinia subflava	2
Abyssinian Slaty Flycatcher	Melaenornis chocolatinus	1
African Dusky Flycatcher	Muscicapa adusta	8
White-rumped Babbler	Turdoides leucopygia omoensis	8
Montane White-eye	Zosterops poliogastrus	25
Thick-billed Raven	Corvus crassirostris	5
Sharpe's Starling	Pholia sharpii	5
Tacazze Sunbird	Nectarinia tacazze	3
Scarlet-chested Sunbird	Chalcomitra senegalensis	3
Variable Sunbird	Cinnyris venustus fazoqlensis	2
Common Fiscal	Lanius Collaris	2
Black-headed Oriole	Oriolus larvatus	1
Abyssinian Black-headed Oriole	Oriolus monacha	5
Cape Rook	Corvus capensis	2
Thick-billed Raven	Corvus crassirostris	2
Swainson's Sparrow	Passer swainsonii	2
Vitelline Masked Weaver	Ploceus vitellinus	1
Spectacled Weaver	Ploceus ocularis	1
Baglafecht Weaver	Ploceus baglafecht	1
Yellow-bellied Waxbill	Coccopygia quartinia	5
Black-and-white Mannikin	Lonchura bicolor	5
Pin-tailed Whydah	Vidua macroura	1
African Citril	Serinus citrinelloides	3
Brown-rumped Seedeater	Serinus tristriatus	2

3.1.5 Bamboo Forest

Date: 02/08/2019, 1 pm GPS position along a transect: Latitude 7.241111 / Longitude 36.452222; 2,590 m a.s.l. Habitat: bamboo forest, riverine forest

Table 6: List of birds recorded at Bamboo Forest

Common name	Scientific name	Counted specimens
Black Saw-wing	Psalidoprocne pristoptera	5
Rüppell's Robin-Chat	Cossypha semirufa	1
Cinnamon Bracken Warbler	Bradypterus cinnamomeus	1
Grey-backed Camaroptera	Camaroptera brachyura	1
Montane White-eye	Zosterops poliogastrus	6
Tacazze Sunbird	Nectarinia tacazze	3
Yellow-bellied Waxbill	Coccopygia quartinia	2
Brown-rumped Seedeater	Serinus tristriatus	1

Date: 06/08/2019, 8 am – 4.45 pm GPS position: Latitude 7.506944 / Longitude 36.119444; 2,139 m a.s.l. Habitat: intact evergreen montane forest

Table 7: List of birds found at Saja Forest

Common name	Scientific name	Counted specimens
Woolly-necked Stork	Ciconia episcopus	2
White-backed Vulture	Gyps africanus	6
Rüppell's Vulture	Gyps rueppellii	1
Common Buzzard	Buteo buteo	1
African Hobby	Falco cuvierii	1
African Olive Pigeon	Columba arquatrix	1
Red-eyed Dove	Streptopelia semitorquata	1
Yellow-fronted Parrot	Poicephalus flavifrons	12
White-cheeked Turaco	Tauraco leucotis	4
Red-chested Cuckoo	Cuculus solitarius	4
Black Cuckoo	Cuculus clamosus gabonensis	1
Klaas's Cuckoo	Chrysococcyx klaas	1
Blue-breasted Bee-eater	Merops lafresnayii	8
Broad-billed Roller	Eurystomus glaucurus	1
African Grey Hornbill	Tockus nasutus	1
Crowned Hornbill	Tockus alboterminatus	3
Yellow-fronted Tinkerbird	Pogoniulus chrysoconus	1
Double-toothed Barbet	Lybius bidentatus	1
Lesser Honeyguide	Indicator minor	1
Eastern Grey Woodpecker	Dendropicos spodocephalus	3
Black Saw-wing	Psalidoprocne pristoptera	6
Red-shouldered Cuckoo-shrike	Campephaga phoenicea	1
Common Bulbul	Pycnonotus barbatus schoanus	>10
Mountain Thrush	Turdus abyssinicus	1
Cinnamon Bracken Warbler	Bradypterus cinnamomeus	2
Grey-backed Camaroptera	Camaroptera brachyura	7
African Dusky Flycatcher	Muscicapa adusta	3
Black-headed Batis	Batis minor	2
White-rumped Babbler	Turdoides leucopygia omoensis	5
Montane White-eye	Zosterops poliogastrus	3
Variable Sunbird	Cinnyris venustus	2
Northern Puffback	Dryoscopus gambensis	2
Ethiopian Boubou	Laniarius aethiopicus	>10
Abyssinian Oriole	Oriolus monacha	7
Thick-billed Raven	Corvus crassirostris	4
Red-winged Starling	Onychognathus morio	30
Sharpe's Starling	Pholia sharpii	5
Village Weaver	, Ploceus cucullatus	20
Spectacled Weaver	Ploceus ocularis	2
Yellow-bellied Waxbill	Coccopygia quartinia	5

3.2 Wetlands

Six wetland areas were investigated: Alemgono (Table 8), Chefahanna (Table 9), Shoriri (Table 10), Yartachi (Table 11), Gojeb (Table 12) and Decha (Table 13).

3.2.1 Alemgono

Date: 30/07/2019, 6.30 am – 4.45 pm GPS position: Latitude 7.361667 / Longitude 36.217778; 1,722 m a.s.l. GPS position wetland: Latitude 7.356944 / Longitude 36.227500 GPS position cultivated area: Latitude 7.352778 / Longitude 36.232778 Habitat: transitional area farmland (maize and teff) to wetland (dense stands of *Cyperus latifolius* surrounded by heavily grazed areas, swampy area with *Typha spp*.)

Table 8: List of birds found at Alemgono (AG)

Common name	Scientific name	Counted specimens	Remarks
Wolly-necked Stork	Ciconia episcopus	14	
Hadada Ibis	Bostrychia hagedash	>10	
Wattled Ibis	Bostrychia carunculata	2	
Hooded Vulture	Necrosyrtes monachus	8	
White-backed Vulture	Gyps africanus	7	
Great Sparrowhawk	Accipiter melanoleucus	1	
African Harrier Hawk	Polyboroides typus	1	
Augur Buzzard	Buteo augur	2	
Red-chested Flufftail	Sarothrura rufa	8	
Rouget's Rail	Rougetius rougetii	5	
Black Crowned Crane	Balearica pavonina	2	
African Green Pigeon	Treron calvus	7	
Blue-spotted Wood Dove	Turtur afer	6	
Tambourine Dove	Turtur tympanistria	4	
Red-eyed Dove	Streptopelia semitorquata	>10	
Laughing Dove	Streptopelia senegalensis	1	
Black-winged Lovebird	Agapornis taranta	4	
Jacobin Cuckoo	Clamator jacobinus	1	
Black Cuckoo	Cuculus clamosus	1	
Blue-headed Coucal	Centropus monachus	4	
Speckled Mousebird	Colius striatus	8	
Little Bee-eater	Merops pusillus	>40	
Silvery-cheeked Hornbill	Bycanistes brevis	12	
Red-fronted Tinkerbird	Pogoniulus pusillus	2	
Brown-throated Martin	Riparia paludicola	1	
Mosque Swallow	Cecropsis senegalensis	2	
Abyssinian Longclaw	Macronyx flavicollis	2	
Grassland Pipit	Anthus cinnamomeus	1	
Common Bulbul	Pycnonotus barbatus schoanus	>10	
Mountain Thrush	Turdus abyssinicus	2	
Grey-backed Camaroptera	Camaroptera brachyura	>15	
Ethiopian Cisticola	Cisticola lugubris	4	

African Dusky FlycatcherMusciGrey-headed BatisBatisWhite-rumped BabblerTurdo	subflava capa adusta orientalis ides leucopygia omoensis	1 3 2	
Grey-headed Batis Batis White-rumped Babbler Turdo	orientalis		
White-rumped Babbler Turdo		2	
	ides leucopyaia omoensis	2	
	aco icacopygia oniochoio	11	
Abyssinian White-eye Zoste	rops abyssinicus	2	
Tacazze Sunbird Nector	rinia tacazze	>5	
Copper Sunbird Cinny	ris cupreus	3	
Scarlet-chested Sunbird Chalc	omitra senegalensis	4	
Variable Sunbird Cinny	ris venustus	>10	
Common Fiscal Laniu	s collaris	>10	
Ethiopian Boubou Lania	rius aethiopicus	6	
Black-headed Oriole Oriolu	ıs larvatus	1	
Cape Rook Corvu	s capensis	5	
Red-billed Oxpecker Bupha	agus erythrorhynchus	6	
Greater Blue-eared Starling Lamp	rotornis chalybaeus	>20	Two flocks, near the grazing cattle
Splendid Starling Lamp	rotornis splendidus	15	Flock in a fruiting Fig tree
Village Weaver Ploce	us cucullatus	30	One big breeding colony near the swamp; others in the farmland
Spectacled Weaver Ploce	us ocularis	2	Cultivated area
Baglafecht Weaver Ploce	us baglafecht	4	Cultivated area
Black Bishop Euple	ctes gierowii	4	Maize plantation
Red-collared Widowbird Euple	ctes ardens	>10	
Fan-tailed Widowbird Euple	ctes axillaris	80	
Red-billed Firefinch Lagor	nosticta senegala	2	
Common Waxbill Estrild	da astrild	3	Near the swamp
Bronze Mannikin Spern	nestes cucullata	>30	
Pin-tailed Whydah Vidua	macroura	2	
Village Indigobird Vidua	chalybeata	1	
African Citril Serini	us citrinelloides	2	

3.2.2 Chefahanna

Date: 03/08/2019, 6.50 am – 12.30 pm GPS position: Latitude 7.294722 / Longitude 36.378611; 2,440 m a.s.l. Habitat: wetland surrounded by montane forest, small meadow stream

Table 9: List of birds found at Chefahanna

Common name	Scientific name	Counted specimens
Hadada Ibis	Bostrychia hagedash	11
White-backed Vulture	Gyps africanus	7
Rüppell's Vulture	Gyps rueppellii	17
Great Sparrowhawk	Accipiter melanoleucus	2
Augur Buzzard	Buteo augur	1
Chestnut-naped Francolin	Pternistis castaneicollis	1
Rouget's Rail	Rougetius rougetii	2
Blue-spotted Wood Dove	Turtur afer	1
Red-eyed Dove	Streptopelia semitorquata	1
Black-winged Lovebird	Agapornis taranta	7
White-cheeked Turaco	Tauraco leucotis	1
Red-fronted Tinkerbird	Pogoniulus pusillus	1
Lesser Honeyguide	Indicator Minor	1
Abyssinian Woodpecker	Dendropicos abyssinicus	1
Black Saw-wing	Psalidoprocne pristoptera	8
Common Bulbul	Pycnonotus barbatus schoanus	2
Rüppell's Robin-Chat	Cossypha semirufa	1
Mountain Thrush	Turdus abyssinicus	2
Cinnamon Bracken Warbler	Bradypterus cinnamomeus	5
Grey-backed Camaroptera	Camaroptera brachyura	2
Abyssinian Slaty Flycatcher	Melaenornis chocolatinus	1
African Dusky Flycatcher	Muscicapa adusta	1
Montane White-eye	Zosterops poliogastrus	26
Tacazze Sunbird	Nectarinia tacazze	12
Variable Sunbird	Cinnyris venustus	2
Northern Puffback	Dryoscopus gambensis	2
Ethiopian Boubou	Laniarius aethiopicus	2
Abyssinian Oriole	Oriolus monacha	3
Black-headed Oriole	Oriolus larvatus	3
Cape Rook	Corvus capensis	2
Thick-billed Raven	Corvus crassirostris	6
Baglafecht Weaver	Ploceus baglafecht	2
Yellow-bellied Waxbill	Coccopygia quartinia	5
Black-and-White Mannikin	Spermestes bicolor	5
Streaky Seedeater	Serinus striolatus	2

3.2.3 Shorori

1) Date: 04/08/2019, 6.50 am – 1.30 pm GPS position: Latitude 7.344444 / Longitude 36.191111; 1,685 m a.s.l. GPS position: Latitude 7.346111 / Longitude 36.198333; 1,618 m a.s.l. GPS position: Latitude 7.350278 / Longitude 36.200278; 1,622 m a.s.l. Habitat: big wetland, swampy areas surrounded by montane forest

Table 10: List of birds found at Shoriri Wetland

Common name	Scientific name	Counted specimens	Remarks
Woolly-necked Stork	Ciconia episcopus	1	
Hadada Ibis	Bostrychia hagedash	35	
Wattled Ibis	Bostrychia carunculata	3	
Egyptian Goose	Alopochen aegyptiaca	1	
Yellow-billed Duck	Anas undulata	9	
African Goshawk	Accipiter tachiro	1	
Augur Buzzard	Buteo augur	1	
African Harrier Hawk	Polyboroides typus	4	
Crowned Eagle	Stephanoaetus coronatus	1	
Red-chested Flufftail	Sarothrura rufa	6	
Rouget's Rail	Rougetius rougetii	3	
African Rail	Rallus caerulescens	1	
Black Crowned Crane	Balearica pavonina	15	
African Green Pigeon	Treron calvus	2	
Blue-spotted Wood Dove	Turtur afer	3	
Tambourine Dove	Turtur tympanistria	2	
Red-eyed Dove	Streptopelia semitorquata	2	
White-cheeked Turaco	Tauraco leucotis	5	
Levaillant's Cuckoo	Clamator levaillantii	2	
Red-chested Cuckoo	Cuculus solitarius	4	
Black Cuckoo	Cuculus clamosus	1	
African Palm Swift	Cypsiurus parvus	4	
Speckled Mousebird	Colius striatus	7	
Woodland Kingfisher	Halcyon senegalensis	1	
Striped Kingfisher	Halcyon chelicuti	1	
Broad-billed Roller	Eurystomus glaucurus	2	
Crowned Hornbill	Tockus alboterminatus	3	
Silvery-cheeked Hornbill	Bycanistes brevis	8	
Double-toothed Barbet	Lybius bidentatus	3	
Red-rumped Swallow	Cecropis daurica	6	
Mountain Wagtail	Motacilla clara	2	
Red-shouldered Cuckoo-shrike	Campephaga phoenicea	1	
Common Bulbul	Pycnonotus barbatus schoanus	8	
Mountain Thrush	Turdus abyssinicus	6	
Cinnamon Bracken Warbler	Bradypterus cinnamomeus	2	
Grey-backed Camaroptera	Camaroptera brachyura	4	

Common name	Scientific name	Counted specimens	Remarks
Ethiopian Cisticola	Cisticola lugubris	2	
African Dusky Flycatcher	Muscicapa adusta	2	
African Paradise Flycatcher	Terpsiphone viridis	1	
White-rumped Babbler	Turdoides leucopygia omoensis	5	
Montane White-eye	Zosterops poliogastrus	7	
Copper Sunbird	Cinnyris cupreus	3	
Scarlet-chested Sunbird	Chalcomitra senegalensis	3	
Variable Sunbird	Cinnyris venustus	1	
Common Fiscal	Lanius collaris	1	
Ethiopian Boubou	Laniarius aethiopicus	4	
Marsh Tchagra	Tchagra minutus	1	
Abyssinian Oriole	Oriolus monacha	5	
Red-billed Oxpecker	Buphagus erythrorhynchus	9	
Greater Blue-eared Starling	Lamprotornis chalybaeus	1	
Swainson's Sparrow	Passer swainsonii	27	
Village Weaver	Ploceus cucullatus	15	One colony in the cultivated farm
Red-headed Quelea	Quelea erythrops	7	
Red-collared Widowbird	Euplectes ardens	1	
Fan-tailed Widowbird	Euplectes axillaris	13	
Red-billed Firefinch	Lagonosticta senegala	5	
Black-and-white Mannikin	Spermestes bicolor	7	
Pin-tailed Whydah	Vidua macroura	13	
African Citril	Serinus citrinelloides	3	

3.2.4 Yartachi

Date: 05/08/2019, 6.50 am – 12.30 pm GPS position: Latitude 7.403611 / Longitude 36.368889; 1,327 m a.s.l. GPS position: Latitude 7.407500 / Longitude 36.376667; 1,317 m a.s.l. Habitat: transitional area farmland (maize) to natural and secondary grassland, more or less wet; riverine vegetation and sparse stands of *Cyperus latifolius* surrounded by heavily grazed areas

Table 11: List of birds found at Yartachi

Common name	Scientific name	Counted specimens	Remarks
Cattle Egret	Bubulcus ibis	3	The only finding of this species during the assessment
Black-headed Heron	Ardea melanocephala	1	
Hadada Ibis	Bostrychia hagedash	30	
Egyptian Goose	Alopochen aegyptiaca	1	
Hooded Vulture	Necrosyrtes monachus	4	
African Harrier Hawk	Polyboroides typus	1	
Augur Buzzard	Buteo augur	2	
Rouget's Rail	Rougetius rougetii	2	
Green Sandpiper	Tringa ochropus	1	
Blue-spotted Wood Dove	Turtur afer	6	
Tambourine Dove	Turtur tympanistria	2	
Red-eyed Dove	Streptopelia semitorquata	>10	
Laughing Dove	Streptopelia senegalensis	1	
Klaas's Cuckoo	Chrysococcyx klaas	2	
Blue-headed Coucal	Centropus monachus	4	
Speckled Mousebird	Colius striatus	>10	
Woodland Kingfisher	Halcyon senegalensis	1	Near Gojeb River
Striped Kingfisher	Halcyon chelicuti	1	
Crowned Hornbill	Tockus alboterminatus	2	
Silvery-cheeked Hornbill	Bycanistes brevis	2	
Red-fronted Tinkerbird	Pogoniulus pusillus	2	
Barn Swallow	Hirundo rustica	3	
Wire-tailed Swallow	Hirundo smithii	2	
Black Saw-wing	Psalidoprocne pristoptera	3	
African Pied Wagtail	Motacilla aguimp	2	
Abyssinian Longclaw	Macronyx flavicollis	2	
Grassland Pipit	Anthus cinnamomeus	5	
Common Bulbul	Pycnonotus barbatus schoanus	>10	
Rüppell's Robin-Chat	Cossypha semirufa	1	
Grey-backed Camaroptera	Camaroptera brachyura	4	
Croaking Cisticola	Cisticola natalensis	5	
Red-faced Cisticola	Cisticola erythrops	2	
Tawny-flanked Prinia	Prinia subflava	2	
African Paradise Flycatcher	Terpsiphone viridis	>10	

Common name	Scientific name	Counted specimens	Remarks
Black-headed Batis	Batis minor	2	
White-rumped Babbler	Turdoides leucopygia omoensis	7	
Montane White-eye	Zosterops poliogastrus	2	
Copper Sunbird	Cinnyris cupreus	15	
Scarlet-chested Sunbird	Chalcomitra senegalensis	5	
Variable Sunbird	Cinnyris venustus	1	
Common Fiscal	Lanius collaris	2	
Grey-backed Fiscal	Lanius excubitorius	5	
Marsh Tchagra	Tchagra minutus	2	
Cape Rook	Corvus capensis	4	
Red-billed Oxpecker	Buphagus erythrorhynchus	6	
Greater Blue-eared Starling	Lamprotornis chalybaeus	2	Two flocks, near the grazing cattle
Swainson's Sparrow	Passer swainsonii	>20	
Village Weaver	Ploceus cucullatus	>200	Three breeding colonies, others in the cultivated farm (maize and Eucalyptus) plantations
Compact Weaver	Ploceus superciliosus	4	
Grosbeak Weaver	Amblyospiza albifrons	2	
Black Bishop	Euplectes gierowii	4	Maize plantation
Red-collared Widowbird	Euplectes ardens	>10	
Yellow-mantled Widowbird	Euplectes macroura	>200	
Red-billed Firefinch	Lagonosticta senegala	4	
Bar-breasted Firefinch	Lagonosticta rufopicta	2	
Bronze Mannikin	Spermestes cucullata	50	
Pin-tailed Whydah	Vidua macroura	>10	
African Citril	Serinus citrinelloides	>10	

3.2.5 Gojeb Wetland, Medabo

Date: 06.08.2019, 6.10 am – 4.45 pm GPS position: Latitude 7.564167 / Longitude 36.375833; 1,566 m a.s.l. GPS position: Latitude 7.557222 / Longitude 36.051667; 1,549 m a.s.l. Habitat: wetland, grazed and ungrazed areas surrounded by forest and cultivation

Table 12: List of birds found at Gojeb Wetland

Common name	Scientific name	Counted specimens
Black-headed Heron	Ardea melanocephala	1
Hamerkop	Scopus umbretta	2
Woolly-necked Stork	Ciconia episcopus	5
Hadada Ibis	Bostrychia hagedash	>20
Egyptian Goose	Alopochen aegyptiaca	1
Yellow-billed Duck	Anas undulata	3
Black-winged Kite	Elanus caeruleus	1
Hooded Vulture	Necrosyrtes monachus	10
White-backed Vulture	Gyps africanus	15
Rüppell's Vulture	Gyps rueppellii	1
Gabar Goshawk	Micronisus gabar	1
Long-crested Eagle	Lophaetus occipitalis	1
Chestnut-naped Francolin	Pternistis castaneicollis	6
Rouget's Rail	Rougetius rougetii	1
Black Crowned Crane	Balearica pavonina	58
Wattled Crane	Bugeranus carunculatus	2
Blue-spotted Wood Dove	Turtur afer	3
Tambourine Dove	Turtur tympanistria	6
Red-eyed Dove	Streptopelia semitorquata	15
Laughing Dove	Streptopelia senegalensis	2
Dusky Turtle Dove	Streptopelia lugens	1
Lemon Dove	Aplopelia larvata	2
Red-chested Cuckoo	Cuculus solitarius	1
Black Cuckoo	Cuculus clamosus gabonensis	3
African Emerald Cuckoo	Chrysococcyx cupreus	1
Blue-headed Coucal	Centropus monachus	4
Speckled Mousebird	Colius striatus	12
Woodland Kingfisher	Halcyon senegalensis	2
Striped Kingfisher	Halcyon chelicuti	1
African Pygmy Kingfisher	Ceyx pictus	3
Crowned Hornbill	Tockus alboterminatus	2
Silvery-cheeked Hornbill	Bycanistes brevis	12
Red-fronted Tinkerbird	Pogoniulus pusillus	1
Double-toothed Barbet	Lybius bidentatus	2
Cardinal Woodpecker	Dendropicos fuscescens	1
Barn Swallow	Hirundo rustica	19

Common name	Scientific name	Counted specimens
African Pied Wagtail	Motacilla aguimp	2
Abyssinian Longclaw	Macronyx flavicollis	10
Grassland Pipit	Anthus cinnamomeus	2
Black-Cuckoo-shrike	Campephaga flava	1
Red-shouldered Cuckoo-shrike	Campephaga phoenicea	2
Common Bulbul	Pycnonotus barbatus schoanus	>15
Rüppell's Robin-Chat	Cossypha semirufa	1
Cinnamon Bracken Warbler	Bradypterus cinnamomeus	1
Grey-backed Camaroptera	Camaroptera brachyura	5
Ethiopian Cisticola	Cisticola lugubris	1
Tawny-flanked Prinia	Prinia subflava	2
Abyssinian Slaty Flycatcher	Melaenornis chocolatinus	2
African Dusky Flycatcher	Muscicapa adusta	4
African Paradise Flycatcher	<i>Terpsiphone viridis</i>	2
Black-headed Batis	Batis minor	2
White-rumped Babbler	Turdoides leucopygia omoensis	6
Montane White-eye	Zosterops poliogastrus	15
Copper Sunbird	Cinnyris cupreus	1
Scarlet-chested Sunbird	Chalcomitra senegalensis	2
Olive Sunbird	Cyanomitra olivacea	1
Variable Sunbird	Cinnyris venustus	2
Collared Sunbird	Hedydipna collaris	2
Common Fiscal	Lanius collaris	6
Grey-backed Fiscal	Lanius excubitorius	3
Ethiopian Boubou	Laniarius aethiopicus	4
Northern Puffback	Dryoscopus gambensis	2
Abyssinian Oriole	Oriolus monacha	2
Cape Crow	Corvus capensis	2
Thick-billed Raven	Corvus crassirostris	2
Red-billed Oxpecker	Buphagus erythrorhynchus	2
Greater Blue-eared Starling	Lamprotornis chalybaeus	7
Swainson's Sparrow	Passer swainsonii	6
Village Weaver	Ploceus cucullatus	25
Spectacled Weaver	Ploceus ocularis	4
Baglafecht Weaver	Ploceus baglafecht	2
Red-headed Quelea	Quelea erythrops	32
Red-collared Widowbird	Euplectes ardens	30
Fan-tailed Widowbird	Euplectes axillaris	50
Common Waxbill	Estrilda astrild	11
Bronze Mannikin	Spermestes cucullata	20
African Citril	Serinus citrinelloides	7

3.2.6 Decha (Baha)

Date: 11/08/2019, 6.40 am – 1.20 pm GPS position: Latitude 7.168889 / Longitude 36.220556; 1,822 m a.s.l. GPS position: Latitude 7.180000 / Longitude 36.208056; 1,904 m a.s.l. Habitat: wetland, riverine forest, montane cloud forest, coffee plantation and agricultural

Table 13: List of birds found at Decha (Baha)

Common name	Scientific name	Counted specimens
Hadada Ibis	Bostrychia hagedash	>20
Egyptian Goose	Alopochen aegyptiaca	1
African Black Duck	Anas sparsa	2
Augur Buzzard	Buteo augur	1
Common Buzzard	Buteo buteo	1
Crowned Eagle	Stephanoaetus coronatus	1
Chestnut-naped Francolin	Pternistis castaneicollis	1
Red-chested Flufftail	Sarothrura rufa	2
Rouget's Rail	Rougetius rougetii	3
African Rail	Rallus caerulescens	2
Black Crowned Crane	Balearica pavonina	12
African Olive Pigeon	Columba arquatrix	9
Red-eyed Dove	Streptopelia semitorquata	15
Yellow-fronted Parrot	Poicephalus flavifrons	6
Black-winged Lovebird	Agapornis taranta	2
White-cheeked Turaco	Tauraco leucotis	1
Red-chested Cuckoo	Cuculus solitarius	4
Black Cuckoo	Cuculus clamosus gabonensis	2
African Emerald Cuckoo	Chrysococcyx cupreus	1
Blue-headed Coucal	Centropus monachus	5
Speckled Mousebird	Colius striatus	10
Woodland Kingfisher	Halcyon senegalensis	1
Malachite Kingfisher	Alcedo cristata	1
African Pygmy Kingfisher	Ceyx pictus	3
Crowned Hornbill	Tockus alboterminatus	2
Silvery-cheeked Hornbill	Bycanistes brevis	2
Red-fronted Tinkerbird	Pogoniulus pusillus	1
Double-toothed Barbet	Lybius bidentatus	2
Banded Barbet	Lybius undatus	1
Green-backed Honeybird	Prodotiscus zambesiae	2
Cardinal Woodpecker	Dendropicos fuscescens	1
Abyssinian Woodpecker	Dendropicos abyssinicus	2
Black Saw-wing	Psalidoprocne pristoptera	2
Mountain Wagtail	Motacilla clara	4
Red-shouldered Cuckoo-shrike	Campephaga phoenicea	3
Common Bulbul	Pycnonotus barbatus schoanus	6
Rüppell's Robin-Chat	Cossypha semirufa	6

Common name	Scientific name	Counted specimens
African Stonechat	Saxicola torquatus	6
Mountain Thrush	Turdus abyssinicus	6
Cinnamon Bracken Warbler	Bradypterus cinnamomeus	8
Little Bush Warbler	Bradypterus baboecala	10
Grey-backed Camaroptera	Camaroptera brachyura	4
Brown Woodland Warbler	Phylloscopus umbrovirens	1
Stout Cisticola	Cisticola robustus	2
Ethiopian Cisticola	Cisticola lugubris	2
Singing Cisticola	Cisticola cantans	5
Tawny-flanked Prinia	Prinia subflava	5
Yellow-breasted Apalis	Apalis flavida	1
Abyssinian Slaty Flycatcher	Melaenornis chocolatinus	12
African Dusky Flycatcher	Muscicapa adusta	>10
African Paradise Flycatcher	Terpsiphone viridis	2
Black-headed Batis	Batis minor	1
African Hill Babbler	Pseudoalcippe abyssinica	1
White-rumped Babbler	Turdoides leucopygia omoensis	2
Montane White-eye	Zosterops poliogastrus	>20
Tacazze Sunbird	Nectarinia tacazze	2
Scarlet-chested Sunbird	Chalcomitra senegalensis	1
Olive Sunbird	Cyanomitra olivacea	2
Variable Sunbird	Cinnyris venustus	2
Common Fiscal	Lanius collaris	2
Northern Puffback	Dryoscopus gambensis	1
Ethiopian Boubou	Laniarius aethiopicus	10
Abyssinian Oriole	Oriolus monacha	4
Swainson's Sparrow	Passer swainsonii	10
Spectacled Weaver	Ploceus ocularis	2
Baglafecht Weaver	Ploceus baglafecht	>10
Fan-tailed Widowbird	Euplectes axillaris	20
Abyssinian Crimsonwing	Cryptospiza salvadorii	4
Yellow-bellied Waxbill	Coccopygia quartinia	10
Common Waxbill	Estrilda astrild	5
Bronze Mannikin	Spermestes cucullata	10
Black-and-white Mannikin	Lonchura bicolor	20
Pin-tailed Whydah	Vidua macroura	2
African Citril	Serinus citrinelloides	>20
Brown-rumped Seedeater	Serinus tristriatus	2
Streaky Seedeater	Serinus striolatus	8

3.2.7 Arguba

Date: 12/08/2019, 7 am - 12.30 pm
GPS position: Latitude 7.410556 / Longitude 36.394167; 1,330 m a.s.l.
GPS position: Latitude 7.419722 / Longitude 36.545000; 1,285 m a.s.l.
Habitat: savannah grassland with Acacia trees; small riverine forest at the side of Gojeb River

Table 14: List of birds found at Arguba

Common name	Scientific name	Counted specimens
Hamerkop	Scopus umbretta	2
Hadada Ibis	Bostrychia hagedash	10
Egyptian Goose	Alopochen aegyptiaca	4
African Fish Eagle	Haliaeetus vocifer	1
White-backed Vulture	Gyps africanus	6
African Goshawk	Accipiter tachiro (unduliventer)	1
Wahlberg's Eagle	Aquila wahlbergi	2
Long-crested Eagle	Lophaetus occipitalis	2
Common Sandpiper	Actitis hypoleucos	2
African Green Pigeon	Treron calvus	4
Blue-spotted Wood Dove	Turtur afer	2
Tambourine Dove	Turtur tympanistria	4
Red-eyed Dove	Streptopelia semitorquata	>20
Eastern Plantain-eater	Crinifer zonurus	2
Red-chested Cuckoo	Cuculus solitarius	2
Klaas's Cuckoo	Chrysococcyx klaas	2
African Emerald Cuckoo	Chrysococcyx cupreus	2
Blue-headed Coucal	Centropus monachus	4
Speckled Mousebird	Colius striatus	12
Woodland Kingfisher	Halcyon senegalensis	1
Striped Kingfisher	Halcyon chelicuti	2
Crowned Hornbill	Tockus alboterminatus	2
Silvery-cheeked Hornbill	Bycanistes brevis	2
Abyssinian Ground-hornbill	Bucorvus abyssinicus	8
Red-fronted Tinkerbird	Pogoniulus pusillus	1
Double-toothed Barbet	Lybius bidentatus	9
Banded Barbet	Lybius undatus	4
Greater Honeyguide	Indicator indicator	1
Nubian Woodpecker	Campethera nubica	1
Cardinal Woodpecker	Dendropicos fuscescens	1
Brown-backed Woodpecker	Picoides obsoletus	1
Barn Swallow	Hirundo rustica	5
Wire-tailed Swallow	Hirundo smithii	1
Black Saw-wing	Psalidoprocne pristoptera	2
African Pied Wagtail	Motacilla aguimp	4
Mountain Wagtail	Motacilla clara	1
Grassland Pipit	Anthus cinnamomeus	1

Common name	Scientific name	Counted specimens
Black Cuckoo-shrike	Campephaga flava	1
Common Bulbul	Pycnonotus barbatus schoanus	>10
Yellow-throated Leaflove	Chlorocichla flavicollis	2
Rüppell's Robin-Chat	Cossypha semirufa	5
Mountain Thrush	Turdus abyssinicus	8
Grey-backed Camaroptera	Camaroptera brachyura	4
Green-backed Eremomela	Eremomela canescens	6
Buff-bellied Warbler	Phyllolais pulchella	3
Croaking Cisticola	Cisticola natalensis	5
Short-winged Cisticola	Cisticola brachypterus	1
Red-faced Cisticola	Cisticola erythrops	2
Tawny-flanked Prinia	Prinia subflava	2
Yellow-breasted Apalis	Apalis flavida	2
Northern Black Flycatcher	Melaenornis edolioides	1
Pale Flycatcher	Bradornis pallidus	4
African Dusky Flycatcher	Muscicapa adusta	2
African Paradise Flycatcher	Terpsiphone viridis	6
Black-headed Batis	Batis minor	10
White-rumped Babbler	Turdoides leucopygia omoensis	16
White-winged Black Tit	Parus leucomelas	2
Abyssinian White-eye	Zosterops abyssinicus	>30
Copper Sunbird	Cinnyris cupreus	4
Variable Sunbird	Cinnyris venustus	1
Collared Sunbird	Hedydipna collaris	1
Grey-backed Fiscal	Lanius excubitorius	6
Cape Rook	Corvus capensis	1
Ethiopian Boubou	Laniarius aethiopicus	4
Swainson's Sparrow	Passer swainsonii	>20
Village Weaver	Ploceus cucullatus	>200
Spectacled Weaver	Ploceus ocularis	2
Red-collared Widowbird	Euplectes ardens	4
Black Bishop	Euplectes gierowii	2
Yellow-mantled Widowbird	Euplectes macroura	>60
Red-billed Firefinch	Lagonosticta senegala	2
Bronze Mannikin	Spermestes cucullata	>30
African Citril	Serinus citrinelloides	10

3.2.8 KDA Guest house and surroundings

Date: 06/08/2019 - 11/08/2019 GPS position: Latitude 7.265000 / Longitude 36.254444; 1,742 m a.s.l.

Habitat: nearby village with gardens, lawns, small crop plantations, hedges, small garbage place, edge of the woods

Unlike the other study areas, we compiled a complete list of the species found during the stay at the KDA Guesthouse from 6 August to 11 August 2019. The numbers in the table below represent the maximum number of counted specimens at one observation time.

Table 15: List of birds found at KDA Guesthouse

Common name	Scientific name	Counted specimens
Hamerkop	Scopus umbretta	1
Woolly-necked Stork	Ciconia episcopus	1
Hadada Ibis	Bostrychia hagedash	4
Wattled Ibis	Bostrychia carunculata	6
Hooded Vulture	Necrosyrtes monachus	5
African Goshawk	Accipiter tachiro	2
Augur Buzzard	Buteo augur	1
Tawny Eagle	Aquila rapax	2
Speckled Pigeon	Columba guinea	>30
Blue-spotted Wood Dove	Turtur afer	2
Tambourine Dove	Turtur tympanistria	2
Red-eyed Dove	Streptopelia semitorquata	4
Black-winged Lovebird	Agapornis taranta	3
Red-chested Cuckoo	Cuculus solitarius	2
Black Cuckoo	Cuculus clamosus gabonensis	2
Klaas's Cuckoo	Chrysococcyx klaas	2
African Emerald Cuckoo	Chrysococcyx cupreus	2
Speckled Mousebird	Colius striatus	6
African Pygmy Kingfisher	Ceyx pictus	1
Blue-breasted Bee-eater	Merops lafresnayii	2
Crowned Hornbill	Tockus alboterminatus	2
Silvery-cheeked Hornbill	Bycanistes brevis	12
Red-fronted Tinkerbird	Pogoniulus pusillus	1
Double-toothed Barbet	Lybius bidentatus	2
Banded Barbet	Lybius undatus	2
Greater Honeyguide	Indicator indicator	1
Lesser Honeyguide	Indicator minor	1
Cardinal Woodpecker	Dendropicos fuscescens	2
Abyssinian Woodpecker	Dendropicos abyssinicus	2
Black Saw-wing	Psalidoprocne pristoptera	1
Common Bulbul	Pycnonotus barbatus schoanus	8
Rüppell's Robin-Chat	Cossypha semirufa	2
Mountain Thrush	Turdus abyssinicus	4
Grey-backed Camaroptera	Camaroptera brachyura	5
Singing Cisticola	Cisticola cantans	2
Tawny-flanked Prinia	Prinia subflava	4

Common name	Scientific name	Counted specimens
Abyssinian Slaty Flycatcher	Melaenornis chocolatinus	4
African Dusky Flycatcher	Muscicapa adusta	6
African Paradise Flycatcher	Terpsiphone viridis	2
Black-headed Batis	Batis minor	2
Spotted Creeper	Salpornis spilonotus	2
Montane White-eye	Zosterops poliogastrus	30
Tacazze Sunbird	Nectarinia tacazze	11
Copper Sunbird	Cinnyris cupreus	8
Scarlet-chested Sunbird	Chalcomitra senegalensis	6
Olive Sunbird	Cyanomitra olivacea	2
Variable Sunbird	Cinnyris venustus	20
Common Fiscal	Lanius collaris	8
Ethiopian Boubou	Laniarius aethiopicus	4
Northern Puffback	Dryoscopus gambensis	2
Abyssinian Oriole	Oriolus monacha	2
Thick-billed Raven	Corvus crassirostris	2
Slender-Billed Starling	Onychognathus tenuirostris	50
Swainson's Sparrow	Passer swainsonii	12
Village Weaver	Ploceus cucullatus	10
Baglafecht Weaver	Ploceus baglafecht	4
Bronze Mannikin	Spermestes cucullate	10
African Citril	Serinus citrinelloides	4
Streaky Seedeater	Serinus striolatus	1

4. Discussion

The Kafa BR is home to one of the country's last natural montane forests. The high bird diversity reflects its landscape heterogeneity characterised by Afromontane mountain clouds, bamboo forests, many wetlands as well as grass and shrub land and rainforests with wild coffee (*Coffea arabica*). As the area is part of the Eastern Afromontane biodiversity hotspot and has been recognized as a Key Biodiversity Area, it is one of the few regions where many rare and specialized species of birds can be expected to occur.

In the first assessment, 178 bird species were recorded during the dry season (NABU, 2017). In August 2019, we detected 179 species during the rainy season. We recorded 57 species not detected in the 2014 assessment. In both surveys, a combined total of 232 different bird species could be identified at the Kafa BR. Due to the relatively small number of days of investigation during the surveys, we assume that the number of bird species actually living at the Kafa BR is much higher, and this requires further investigation in future studies. We also recorded a number of biome-restricted species in the reserve.

About 26 bird species are restricted to the Afrotropical Highland biome and two species are restricted to the Somali-Masai biome (Table 17). Biome-restricted species are very vulnerable to damage and degradation of their biome and need special attention for conservation. This also applies to endemic species, which are already potentially endangered by their very small distribution area. We found three species that are endemic to Ethiopia (Abyssinian Longclaw, Abyssinian Catbird, Yellow-fronted Parrot), 10 species that are endemic to Ethiopia and Eritrea, and six species that are near endemic (Table 18).

We recorded 10 bird species listed in the IUCN Red List of Threatened Species. Crowned Eagle, Rouget's Rail and Abyssinian Longclaw are listed as Near Threatened. Tawny Eagle, Black Crowned Crane and Wattled Crane are Vulnerable, and the Lapped-faced Vulture is Endangered. Three vulture species are listed as Critically Endangered, the Hooded Vulture, the Whitebacked Vulture and the Rüppell's Vulture.

There were some hints from locals that there is a vulture breeding place somewhere on the way from Bamboo Forest to Adiyo. With the help of local guides we found the place – a big gorge. Although August is not the main breeding season, we found one breeding Rüppell's Vulture there and another 32 individuals that were resting on the rocks and on a dry tree. In addition to the Rüppell's Vultures we observed 16 individuals of White-backed Vultures at this place. This site should definitely be visited during the main breeding season (presumably December - February) in order to obtain more information on the number of breeding pairs.

The wetlands are the main core sites for the Wattled Ibis, Rouget's Rail, African Rail, Black Crowned Crane and Wattled Crane. On the other hand, these wetlands are the Kafa BR sites most threatened by overgrazing. However, there are neither data indicating how many pairs are breeding nor how successful the breeding is, let alone data about particular threats. Thus, the cranes require our special attention because they are an endangered species and are particularly sensitive to disturbances at the breeding site. We found only one pair of Wattled Crane, at Gojeb Wetland. The Black Crowned Crane is more widespread and has been found in three (Alemgono, Shoriri, Gojeb Wetland) out of six wetlands studied. Although August is not the main breeding season, we were able to observe a breeding pair in Alemgono. At Gojeb Wetland a roosting group of 58 specimens was observed.

Of the species bound to wetlands, only the endemic Rouget's Rail was present at all the six sites studied. The Red-chested Flufftail, very noticeable by its calling activities, was found in the swampy areas of Alemgono, Shoriri and Decha. The endemic Abyssinian Longclaw, which prefers pasture land with areas of short grass, appeared at Alemgono, Yartachi and Gojeb Wetland.

Among the more forest-bound species the Whitecheeked Turaco and the Silvery-cheeked Hornbill were found in small groups in fruiting trees in most of the studied areas. The Sharpe's Starling occurred in groups of about 10-15 specimens in the tree tops of the forest sites of Kejaraba, the path to the hot springs and Saja. The Yellow-fronted Parrot was found in groups of 4-12 specimens near the hot springs, in Saja and in Decha. The bird is a forest dweller (Boussekey, 2004) and a common visitor to agricultural areas around human settlements. We found it foraging in gallery forests around Boginda Forest and along riverbanks in Decha. We also detected one individual of the Crowned Eagle in Chefahanna and another one in Decha.

The savannah area near Arguba showed a completely different type of habitat. Compared to the other sites examined, it is drier and lower at an elevation of about 1,300 m a.s.l. only. Here we found some bird species, like the White-winged Black Tit, the Brown-backed Woodpecker and the Abyssinian White-eye, that we detected not at all or only rarely in the other areas. It would be very important to maintain this area in its current state and to restrict agricultural intensification.

5. Conclusions and recommendations for conservation and monitoring

5.1 Recommendations for conservation and monitoring

The fast-expanding population and inappropriate land use practices are threatening the exceptional Afromontane coffee forest ecosystem, thus leading to the loss of its flora and fauna resources. This problem calls for effective and adaptive land management systems and strategies that address the need of immediate and long-term integrated development, incorporating the interests and requirements of the local communities.

Bird species associated with certain biomes are used as indicators of the biomes of which they are a part. It is highly unlikely that these species can survive outside these biomes. Degradation or alteration of such biomes is of high concern for the conservation of faunal species. Accordingly, there is a need to address anthropogenic pressures, especially those arising from agricultural intensification.

It is important to check and continue to monitor the status and trends of the avian population and at the same time to look for corrective actions against the negative trends that are currently occurring and affecting the overall ecological system and its functions.

The consequences of unscientifically planned and unsustainable use of natural resources are the environmental problems that lead to poverty and loss of the valuable genetic resources. These processes must therefore be stopped and an effective management system, with detailed study of traditional knowledge for sustainable development and stable ecosystem prospects, must be put in place (Berhan, 2008).

Zoning of the prime areas for their biodiversity values with graded limitations of human use and with agreed management objectives would be an option to avoid the threats to wildlife habitat. Encroachment of the wetlands and forest areas could be reversed by marking the boundaries. Movement of people and livestock should be restricted in such areas. Reinforcement should be applied through sufficient deployment of well-trained rangers and community scouts.

Enforcing conservation laws with improved patrolling could also help to halt the decline and to safeguard the dangerously small populations of many, particularly endemic, species and those that are of special conservation interest and concern. It is highly recommended to have a long-term plan for all the wetlands at the Kafa BR and to initiate an overall management and auditing programme which includes the wetlands. This would avoid over- and misuse, and also mitigate the conflicts over the use of water and land resources that are occurring in the area.

The Kafa BR is strategically placed with room for improvement. It is positioned between the northern and the southern road of the tourist circuit. Appropriate market infrastructures and tourism facilities should be developed, as these enterprises have a big potential for bringing in high income through tourism investment and promotion. This, in turn, could boost both the ecotourism development potential and the cultural assets of the Kafa BR. Brooks and Thompson (1999) comment that 'non-consumptive' use of bird resources can be applied successfully, regardless of the irreplaceability of the biodiversity present. This can be achieved through international nature tourism, which can bring large economic benefits in some circumstances (Sweeting, 1999). A classic example of avi-tourism can be seen at Kenya's Arabuko-Sokoke, Karura and Gatamaiyu Forests.

We recommend regular bird walks within the Kafa BR. These could be led by the already trained NABU staff with assistance of the local university. This will help create conservation awareness of critical habitats. Locals will have interest and they are likely to appreciate their rich biodiversity. A good example is Kenya's famous Wednesday Bird Walks; these activities have been going on for over 40 years. This has led to the training of many tour guides and citizen scientists who continue to play a critical role in biodiversity conservation in Kenya and beyond.

There is strong evidence that support of local conservation non-governmental organisations, for example through BirdLife International's Africa partnership, accelerates motivation, transparency and, critically, effective implementation (Hagen et al., 2000). One particularly stimulating activity of those groups is the development of "Site Support Groups" consisting of interested locals for Important Bird Areas (IBAs).

The Kafa BR has great potential to be developed into an eco-tourism area. This would be supported by effective training of the bird guides and rangers who could direct the visitors. The following key actions to be undertaken in order to implement avitourism are adapted from Asefa (2015):

- Clearly identify avitourism products and services available along potential IBAs. Lack of awareness about Ethiopia's birding product is the primary reason why birders and channel partners do not visit interesting places like Kafa in Ethiopia. Ethiopia's wealth of endemic and rare bird species is an untapped resource that relevant organizations should highlight to encourage birders to visit and that should be promoted actively.
- Establish birding routes and designate birding sites among the specific birding resources requested by birders at visitor destination areas. The most highly relevant resource appears to be a clearly defined birding route (BirdLife South Africa, 2008; Kruger to Canyons Birding Route, undated). For example, in South Africa there are seven established birding routes in different regions of the country, which are initiated and developed by the Avitourism Division of BirdLife South Africa (BirdLife South Africa, 2008; Biggs et al., 2011; Nicolaides, 2013). The country's 'Birding Route' concept is successful in realizing the role birds play in providing ecosystem services and economic values, which means the need to conserve birds and their habitat, and the role local communities play in conserving birds and their habitats (BirdLife South Africa, 2008; Biggs et al., 2011). The 'Birding Route' model developed by BirdLife South Africa is currently being implemented in several countries worldwide, such as Namibia, Australia and Malaysia (BirdLife South Africa, 2008). Although differences may exist in socio-economic, political and environmental issues, such a model can and could also be replicated in Ethiopia.

Selection of areas that qualify for meeting the basic conditions for birders is the first step in establishing birding routes. Selection of routes depends on four main factors which are interlinked (Asefa, 2008; Asefa et al., 2013). These are: (1) The route should encompass some of the areas identified as the country's Important Bird Areas (IBAs) and cover as many different biomes with various habitats as possible, so that the number of species potentially observed is maximised, paying particular attention to endemics, biome or range restricted, rare/ elusive and threatened bird species. Meanwhile, identifying and designating birding sites along the birding routes, where birdwatchers can undertake their birding activities, is equally as important as establishing the routes (Asefa et al., 2013). For the most part, it is generally agreed upon that birders prefer visiting areas with high bird species diversity and with little-known and endemic species; (2) Accessibility to birding sites influences the interests of birders to plan their trip to the destination site, as birdwatchers typically wish to cover wide areas within their single trip (OTF GROUP, 2008). Thus, birding sites should be selected along or

near the routes and be easily accessible by vehicle and/ or on foot; (3) Most bird watchers are people with a reasonable income and so they often require appropriate, if not luxury, accommodation facilities (Sekercioglu, 2002). Suitable accommodation along the routes (e.g. in towns along the route and community/private lodges at birding sites) is crucial for attracting this customer base; and (4) Finally, as is true for any kind of tourism, the safety and security at destination sites is paramount for site selection. As such, changing Ethiopia's overall presumed negative images from the past and the present and publicising its security advantages will be critical in helping to develop avitourism initiatives.

Developing birding resources. In developing the most basic of birding resources it is essential to recognise that almost all birders look for specific resources available at the destination areas when deciding on their booking preferences (Conradie, 2010). The most highly relevant birding resources are clearly defined birding routes, species checklists, maps (showing the routes and birding sites as well as accommodation, facilities and infrastructures), sign boards (BirdLife South Africa, 2008). The Kafa BR must focus on developing the most basic of these birding resources first.

Promotion and marketing depend on booking methods. Birders can be categorised into two broad types: direct birders, who plan their trips themselves, and channel birders, who plan their trips with the assistance of channel tour operator partners (international or regional tour operators working in partnership with local/national tour operators in the destination country) (OTF Group, 2008). While websites and word-of-mouth from friends or colleagues are the two most important sources of information used by direct birders to plan their trip, for channel birders, tour operators (first), websites (second) and birding trade fairs (third) are the major sources of information (OTF Group, 2008; Conradie, 2010). It is, therefore, important to undertake a detailed customer analysis and identify which market the country wishes to exploit in order to develop a detailed marketing strategy to target those customers. Thus, primarily focusing on providing website information, targeting bird fairs and serving channel tour operators are key in promoting Kafa as an avitourism destination.

Launch community bird guide development programmes. The important role that local communities can play in the conservation of birds of the Kafa region and birds' habitats should be recognized. This has shown to work best when the economic benefits from conservation are maximised for the communities. Avitourism, using community bird guides has the potential to generate significant income for the local communities. Community bird guides provide a source of security and can facilitate logistics on site; however, it is their valuable information on where elusive and special bird species may be found that will be the main draw for birding enthusiasts (Asefa, 2008).

Training would be a key component of conserving the biosphere reserve. Through NABU partnership and local universities, notably Bonga University, it is possible to train and supervise forest guards to watch over the endemic birds and the general biodiversity of the Kafa BR. A two-week training of trainers for the field rangers and scouts is strongly recommended. This will compliment the short training offered to the rangers during the biodiversity assessment.

Initiate community development and conservation programmes at birding sites. The rationale of linking conservation and development is to encourage support for conservation among local communities by involving them in management and decision-making, and by providing benefits to offset the costs of protection (Biggs et al., 2011). From a benefit point of view, apart from community guides, local communities living at or around the birding sites/IBAs can be involved in different types of development activities, which are directly linked to avitourism. Offering birders services like a community eco-lodge, local artefact shops, coffee ceremony and traditional dancing is part of the income-generating community development activities that are potentially applicable in most of Ethiopia's IBAs (Asefa, 2008).

Design and establish systems for monitoring and evaluating the impacts of avitourism activities. While avitourism can clearly bring enormous economic benefits to individuals, communities and nations, as well as the conservation and management of natural resources, there are drawbacks associated with an influx of relatively wealthy visitors to an area. For example, avitourism overuse can degrade roads and tourist sites, produce waste and litter and cause bird disturbances.

The management of key montane forests in the Kafa region requires innovative approaches that would serve both development and conservation purposes. This entails zoning of critical habitats into Core. Buffer and Intensive Use Zones based on different management categories and uses. This is in line with the concept and the principles of UNESCO's Man and Biosphere Programme (Berhan, 2008). Where there are no core areas, such should be introduced. This could be done during critical times, for wetlands it could be during the breeding season of some wetland birds, e.g. the Rouget's Rail. The core areas could be one or more areas where critical environments like the prime forest areas are to be protected, the buffer area could consist of corridors between core areas where the use of resources like wildlife reserves can be controlled and resources can be used sustainably.

We recommend Alemgono and Medabo Wetlands, which are currently found in the buffer zone of the Kafa BR, to be upgraded to the core zone. This was also suggested by Chawaka et al. (2018). These wetlands are heavily disturbed by agricultural intensification and overgrazing. The plan would be to start with these two and continue with others later.

Local communities rely on wetlands for their daily livelihoods in some parts of the Kafa region. In this regard, principles of wise use prevail. This will guarantee successful breeding of endemic and other species of global concern.

The Kafa BR could also benefit from additional research. Rodrigues et al. (2018) assert that research should focus on (a) the use of functional diversity and trait approaches to assess bird diversity and the responses to coffee management, (b) the assessment of ecosystem functions and services provided by birds and how these change with coffee management and landscape configuration, (c) understanding the relationships between bird diversity and the production and sustainability of coffee forests.

There is an increase in development of user-friendly mobile applications. Examples include *BirdLasser* for monitoring birds and other wildlife. Using these kinds of applications requires additional training for potential users, but involving the public is essential in order to generate the mass of data needed for a well-founded scientific analysis.

Presentation of the research findings at international conferences would also arouse interest from a wide scientific community. An example is the Pan-African Ornithological Congress, which takes place in an African country every four years and is solely dedicated to research and conservation in Africa. This would serve as a vehicle for the exchange of information on bird conservation between African scientists and those from abroad.

5.2 Suggestions for future studies

The Kafa BR holds a variety of bird species assemblages varying from rare, endemic, resident and migratory species occurring in various habitats. However, rapidly expanding populations, both rural and urban, agricultural expansion into primary forest and overgrazing of wetlands might be the main threat factors for both terrestrial and water bird species at the Kafa BR. These pressures pose serious threats to the sustainability of biodiversity in general and for birds in particular, and counter measures need to be implemented. Effective conservation efforts and detailed study of rare and threatened indicator bird species can provide stepping stones on the way to a stable ecosystem. Conservation and monitoring of these species not only justify the linkages between the biological and socio-economic values at the local level, but they are of strategic importance at national and global levels as well.

For many bird species at the Kafa BR, very little is known about their population size, the distribution of their breeding sites and their breeding success. Furthermore, little is known about the threats these birds are facing, which can be very different for forest species or species of open land. However, this knowledge is crucial in order to contribute to good breeding success and a high survival rate and thereby ensure the survival of a species in the region.

Therefore, further investigations on the population status, monitoring and key threats should be carried out at least for some of the threatened, the indicator and the umbrella species of the biosphere reserve, such as the Abyssinian Longclaw, Wattled Ibis, Wattled Crane, Black Crowned Crane, Rouget's Rail, Lappet-faced Vulture and White-headed Vulture (see the status in Table 16 of the Annex).

We recommend well-resourced, community-based advocacy and awareness-raising actions within the Kafa region, especially for all endemic and IUCN-listed bird species.

The rails and cranes

Rouget's Rail

Rouget's Rail (*Rougetius rougetii*, Guérin-Méneville 1843) in the Rallidae family is an endemic bird to Ethiopia and Eritrea between 1,500 and 4,100 m a.s.l. elevation. The species is listed as Near Threatened in the IUCN Red List of Threatened Species because it is thought to be declining rapidly owing to the modification of its habitats. The bird appears to have maintained its distribution, but to have suffered a reduction in numbers. Therefore, an investigation of the current distribution, population status and breeding success of the species in its natural habitat at the Kafa BR is crucial. Moreover, extensive surveys should be conducted in all potentially suitable habitats in the region, particularly wetlands, high-altitude marsh lands, grasslands, rivers, freshwater marshes, pasture lands and rural gardens, using standard survey methodology.

Black Crowned Crane and Wattled Crane

Similarly, cranes are among the world's most threatened groups of birds. Several of the families have come close to the precipice of extinction, and many may now be globally threatened. Diverse threats, including habitat loss and degradation, pollution, exploitation, poisoning and disturbance, beset the cranes. The situation in different crane habitats is highly dynamic, so that even small local changes in certain populations can significantly affect the status of a species as a whole. Thus, an understanding of the biology, ecology, and status of Black Crowned Crane and Wattled Crane at the Kafa BR is fundamental to the success of efforts to conserve these species and the ecosystems within which they exist.

Finally, threat and conservation issues of both rails and cranes should also be assessed for designing possible conservation action plans for the region and later for the rest of the country.

The vultures

Particular attention should be paid to vultures, which are in sharp decline in the vast majority of their breeding areas. Vultures are highly susceptible to incidences of poisoning. We recommend investigation of the use of various livestock drugs in the area. This may be important in augmenting the effects of changes in the regulation of veterinary drugs toxic to vultures. NABU should lead in the prevention of poisoning through national bans on harmful carbamate pesticides and diclofenac, coupled with education and awareness raising to reduce demand and use of such chemicals. This can be done through consultation workshops, organised at the Kafa BR with relevant stakeholders. A continued Kafa BR vulture programme, coordinated by NABU in multiple sites, is required to support the persistence of Kafa's vulture population as a stronghold of Ethiopian vultures.

Development of single-species action plans for the critically endangered vultures would be a priority to guide conservation. The said species would also serve as umbrella species, helping the conservation of other species in that region. We recommend further study in order to understand the attitude of people towards vultures, especially factors influencing behaviours that support their conservation. This is vital if the decline in vultures is to be slowed down and reversed. Local veterinary officers should be educated on the risks to vultures in the form of various drugs like diclofenac and Furadan. Proper carcass disposal methods should be encouraged to reduce the number of contaminated carcasses available to vultures. Religious leaders should incorporate stewardship of the environment and use their platforms to educate the public on the immense contributions that vultures make in ensuring human well-being. Vultures stand a greater chance of being protected when they are appreciated and their importance in providing key ecosystem functions is understood.

Thanks to the whole bird team!

Figure 1: The bird team of NABU's follow-up biodiversity assessment (from left to right: special guest Steffi Brandes (NABU Headquarters); Dominic Kimani (National Museums of Kenya); Mintesinot Shetachew (Forest Department Official); Dr. Yodit Ayele (Bonga University); Bernhard Walter (NABU Africa Working Group); Kiros Welegerima Gerlass (Mekelle University); Woldemariam Tesfahunegn (EBI); Mohamed Abamscha (NABU Ranger); Nassir Oshman (NABU Ranger); Wondwosen Bekele (NABU Office Bahir Dar) is missing in this photo (photo: NABU/Marie Schoroth)

Berhan, L. A. (2008). Status and Distribution of Faunal Diversity in Kafa Afromontane Coffee Forest. Addis Ababa, 56. Downloaded on 03/10/2019.

Boussekey, M. & Pelsy, C. & Pelsy, F. (2002). Preliminary FieldRreport on Yellow-faced Parrot *Poicephalus flavi frons* in Ethiopia. PssitaScene, 52:4-5.

Brooks, T. & Thompson, H. S. (2001). Current Bird Conservation Issues in Africa. The Auk, 118(3), 575-582. Downloaded from: www.bioone.org/journals/The-Auk on 01/10/2019 Terms of Use: www.bioone.org/termsof-use.

Chawaka, S.N.; Boets, P.; Goethals, P.L.M. & Mereta, S.T. (2018). Does the protection status of wetlands safeguard diversity of macroinvertebrates and birds in southwestern Ethiopia? Biological conservation, 226, 63-71. Downloaded on 03/10/2019.

Clark, W.S. & Davies, R. (2018). African Raptors (Helm Identification Guides).

Hagen, R.; Trempe, F. & Kasisi, J.-R. (2000). African NGO-Government Partnerships for Sustainable Biodiversity Action Project RAF/97/G31/1G/31. Mid-term evaluation.

Rodrigues, P. & Fischer, J. (2018). Bird Diversity and the Resilience of Southwestern Ethiopian Forests. Tropical Conservation Science, 11, 1940082918781928.

Sweeting, J.E.; Bruner, A.G. & Rosenfeld, A.B. (1999). The Green Host Effect, An Integrated Approach to Sustainable Tourism and Resort Development (No. 33545 Caja (551)). Conservation International.

Asefa, A. (2015). Avitourism in Ethiopia: Potential Socio-Economic and Environmental Benefits, Current Status and Suggestions for Future Development. Ethiopian Journal of Environmental Studies and Management, 8(2), 983-992.

Asefa, A. (2008). Report on experience sharing visit to BirdLife South Africa on Avitourism Development Initiatives. Bale-Dinsho, Ethiopia: Bale Mountains National Park.

Asefa, A.; Richman, E., Baggallay, T. & Admassu, B. (2013). Bale Mountains National Park Birding Booklet. Addis Ababa, Ethiopia: Ethiopian Wildlife Conservation Authority. **Biggs, D.; Turpie, J.; Fabricius, C. & Spenceley, A.** (2011). The Value of Avitourism for Conservation and Job Creation – An analysis from South Africa. Conservation and Society, 9(1):80-90.

BirdLife South Africa (2008). A Feathership of Partners. Durban, South Africa: BirdLife South Africa.

Conradie, N. (2010). International market potential of avitourism in South Africa. Johannesburg, South Africa: University of South Africa, Pretoria.

The Nature and Biodiversity Conservation Union (NABU) (eds.), (2017). NABU's Biodiversity Assessment at the Kafa Biosphere Reserve. Berlin, Addis Ababa.

Nicolaides, A. (2013). Promoting Avitourism as a special niche area of Ecotourism in South Africa. African Journal of Hospitality, Tourism and Leisure, 2 (3): 1-16.

OTF (On the Frontier) Group, Inc. (2008). Building a winning bird product in Rwanda: target customer and channel partner needs. Kigali, Rwanda: Rwanda Wildlife Authority.

Redman, N.; Stevenson, T. & Fanshawe, J. (2009). Birds of the Horn of Africa: Ethiopia, Eritrea, Djibouti, Somalia and Socotra (Princeton Field Guides).

Sekercioglu, C.H. (2002). Impacts of birdwatching on human and avian communities. Environmental Conservation, 29(3): 282-289.

7. Annex

7.1 Tables

Table 16: List of birds recorded during NABU's first and follow-up biodiversity assessments at the Kafa BR (Beisenherz et al.)

Common name	Scientific name	IUCN Status	Status in Ethiopia	2019	2014
Little Grebe	Tachybaptus ruficollis		RB		Х
Long-tailed Cormorant	Phalacrocorax africanus		RB		Х
African Darter	Anhinga rufa		RB	Х	
Cattle Egret	Bubulcus ibis		RB	Х	
Striated Heron	Butorides striata		RB		Х
Black-headed Heron	Ardea melanocephala		RB	Х	Х
Hamerkop	Scopus umbrette		RB	Х	Х
White Stork	Ciconia Ciconia		NB		Х
Abdim's Stork	Ciconia abdimii		MB/NB	Х	
Woolly-necked Stork	Ciconia episcopus		rb	Х	Х
Hadada Ibis	Bostrychia hagedash		RB	Х	Х
Wattled Ibis	Bostrychia carunculate		RB	Х	Х
Egyptian Goose	Alopochen aegyptiaca		RB	Х	Х
Yellow-billed Duck	Anas undulata		RB	Х	
African Black Duck	Anas sparsa		RB	Х	Х
Yellow-billed Kite	Milvus aegyptius		RB		Х
Black-winged Kite	Elanus caeruleus		RB	Х	
African Fish Eagle	Haliaeetus vocifer		RB	Х	Х
Hooded Vulture	Necrosyrtes monachus	CR	RB,EN	Х	Х
Lappet-faced Vulture	Torgos tracheliotus	EN	rb, VU	Х	Х
White-headed Vulture	Trigonoceps occipitalis	CR	rb, VU		Х
White-backed Vulture	Gyps africanus	CR	RB, NT	Х	Х
Rüppell's Vulture	Gyps rueppellii	CR	RB, NT	Х	Х
Western banded Snake Eagle	Circaetus cinerascens		RB,		Х
Bateleur	Terathopius ecaudatus	NT	RB, NT		Х
Western Marsh Harrier	Circus aeruginosus		NB		Х
Montagu's Harrier	Circus pygargus		NB		Х
Gabar Goshawk	Micronisus gabar		RB	Х	
African Goshawk	Accipiter tachiro		RB	Х	Х
Rufous-breasted Sparrowhawk	Accipiter rufiventris		RB		Х
Great Sparrowhawk	Accipiter melanoleucus		RB	Х	
Augur Buzzard	Buteo augur		RB	Х	Х
Common Buzzard	Buteo buteo		NB	Х	Х
Greater Spotted Eagle	Aquila clanga	VU	NB, VU		Х
Tawny Eagle	Aquila rapax	VU	RB	Х	Х
Steppe Eagle	Aquila nipalensis	EN	NB		Х

Abbrevations; RB - Resident breeder, rb - Mainly resident but partially migratory of or erratic or marginal occurance, MB - Breeding visitor (intra-African migrant), mb - Breeding visitor(sparse occurance), NB - Non-breeding visitors (Palearctic or intra-African migrant), nb - Non-breeding visitor (sparse occurance) and the second sec

Common name	Scientific name	IUCN Status	Status in Ethiopia	2019	2014
Wahlberg's Eagle	Aquila wahlbergi		NB/mb	х	
Ayres's Hawk Eagle	Hieraaetus ayresii		RB	Х	Х
Long-crested Eagle	Lophaetus occipitalis		RB	Х	Х
African Harrier Hawk	Polyboroides typus		RB	Х	
Crowned Eagle	Stephanoaetus coronatus	NT	RB	Х	Х
African Hobby	Falco cuvierii		RB	Х	Х
Common Kestrel	Falco tinnunculus		RB/NB		Х
Helmeted Guineafowl	Numida Meleagris		RB	Х	Х
Common Quail	Coturnix coturnix		MB/NB		Х
Chestnut-naped Francolin	Francolinus castaneicollis		RB	Х	Х
Scaly Francolin	Francolinus squamatus		RB		Х
Red-chested Flufftail	Sarothrura rufa		mb	Х	
Rouget's Rail	Rougetius rougetii	NT	RB, NT	Х	Х
Black Crake	Amaurornis flavirostra		RB		Х
African Rail	Rallus caerulescens		rb	Х	Х
Black Crowned Crane	Balearica pavonina	VU	RB, VU	Х	Х
Wattled Crane	Bugeranus carunculatus	VU	RB, VU	Х	Х
African Finfoot	Podica senegalensis		RB		Х
African Wattled Lapwing	Vanellus senegallus		RB		Х
Green Sandpiper	Tringa ochropus		NB	Х	Х
Wood Sandpiper	Tringa glareola		NB		Х
Common Sandpiper	Actitis hypoleucos		NB	Х	Х
Common Snipe	Gallinago gallinago		NB		Х
African Green Pigeon	Treron calvus		RB	Х	Х
Bruce's Green Pigeon	Treron waalia		RB		Х
Speckled Pigeon	Columba guinea		RB	Х	Х
African Olive Pigeon	Columba arquatrix		RB	Х	Х
Blue-spotted Wood Dove	Turtur afer		RB	Х	Х
Tambourine Dove	Turtur tympanistria		RB	Х	Х
Red-eyed Dove	Streptopelia semitorquata		RB	Х	Х
Laughing Dove	Streptopelia senegalensis		RB	Х	
Dusky Turtle Dove	Streptopelia lugens		RB	Х	Х
Lemon Dove	Aplopelia larvata		RB	Х	Х
Yellow-fronted Parrot	Poicephalus flavifrons		RB	Х	
Black-winged Lovebird	Agapornis taranta		RB	Х	Х
White-cheeked Turaco	Tauraco leucotis		RB	Х	Х
Eastern Plantain-eater	Crinifer zonurus		rb	Х	
Levaillant's Cuckoo	Clamator levaillantii		rb	Х	
Red-chested Cuckoo	Cuculus solitarius		RB	Х	
Black Cuckoo	Cuculus clamosus		MB	Х	

 $Abbrevations: RB - Resident \ breeder, \ rb - Mainly \ resident \ but \ partially \ migratory \ of \ or \ erratic \ or \ marginal \ occurance, \ MB - Breeding \ visitor \ (intra-African \ migrant), \ nb - Breeding \ visitor \ (sparse \ occurance), \ NB - Non-breeding \ visitors \ (Palearctic \ or \ intra-African \ migrant), \ nb - Non-breeding \ visitor \ (sparse \ occurance), \ visitor \ (sparse \ occurance), \ visitors \ (abc) \ visitors \ (abc) \ visitors \ (bb) \ visitors \ (bb) \ visitors \ vis$

Common name	Scientific name	IUCN Status	Status in Ethiopia	2019	2014
Klaas's Cuckoo	Chrysococcyx klaas		RB	Х	Х
African Emerald Cuckoo	Chrysococcyx cupreus		RB	Х	Х
Blue-headed Coucal	Centropus monachus		RB	Х	Х
African Wood Owl	Strix woodfordii		RB	Х	Х
Montane Nightjar	Caprimulgus poliocephalus		RB		Х
Little Swift	Apus affinis		RB		Х
White-rumped Swift	Apus caffer		MB	Х	
African Palm Swift	Cypsiurus parvus		RB	Х	
Speckled Mousebird	Colius striatus		RB	Х	Х
Narina Trogon	Apaloderma narina		RB	Х	
Pied Kingfisher	Ceryle rudis		RB		Х
Giant Kingfisher	Megaceryle maxima		RB		Х
Woodland Kingfisher	Halcyon senegalensis		RB	Х	
Half-collared Kingfisher	Alcedo semitorquata		RB	Х	Х
Striped Kingfisher	Halcyon chelicuti		RB	Х	х
Malachite Kingfisher	Alcedo cristata		RB	Х	Х
African Pygmy Kingfisher	Ceyx pictus		RB	Х	Х
Little Bee-eater	Merops pusillus		RB	Х	Х
Blue-breasted Bee-eater	Merops lafresnayii		RB	Х	Х
White-throated Bee-eater	Merops albicollis		MB/NB		Х
European Bee-eater	Merops apiaster		NB		Х
Northern Carmine Bee-eater	Merops nubicus		RB		Х
Broad-billed Roller	Coracias glaucurus		MB	Х	Х
African Grey Hornbill	Tockus nasutus		RB	Х	Х
Crowned Hornbill	Tockus alboterminatus		RB	Х	Х
Silvery-cheeked Hornbill	Bycanistes brevis		RB	Х	Х
Abyssinian Ground-hornbill	Bucorvus abyssinicus		RB	Х	
Yellow-fronted Tinkerbird	Pogoniulus chrysoconus		RB	Х	Х
Red-fronted Tinkerbird	Pogoniulus pusillus		RB	Х	
Double-toothed Barbet	Lybius bidentatus		RB	Х	Х
Banded Barbet	Lybius undatus		RB	Х	Х
Greater Honeyguide	Indicator indicator		RB	Х	Х
Lesser Honeyguide	Indicator minor		RB	Х	Х
Green-backed Honeyguide	Prodotiscus zambesiae		RB	Х	
Red-throated Wryneck	Jynx ruficollis		RB	X	
Eurasian Wryneck	Jynx torquilla		NB		Х
Nubian Woodpecker	Campethera nubica		RB	Х	X
Cardinal Woodpecker	Dendropicos fuscescens		RB	X	X
Abyssinian Woodpecker	Dendropicos abyssinicus		RB	X	
Brown-backed Woodpecker			RB	X	
Brown-backed woodpecker	Picoides obsoletus		ND ND	^	

 $Abbrevations: RB - Resident \ breeder, rb - Mainly resident \ but partially migratory \ of \ or \ erratic \ or \ marginal \ occurance, MB - Breeding \ visitor \ (intra-African migrant), mb - Breeding \ visitor \ (sparse \ occurance), NB - Non-breeding \ visitor \ (Palearctic \ or \ intra-African \ migrant), mb - Non-breeding \ visitor \ (sparse \ occurance), visitor \ (sparse \ occurance), visitor \ (visitor) \ visitor) \ visitor \ (visitor) \ visitor \ (visitor) \ visitor \ (visitor) \ visitor) \ visitor \ visitor) \ visitor \ (visitor) \ visitor) \ visitor \ visitor) \ visitor)$

Common name	Scientific name	IUCN Status	Status in Ethiopia	2019	2014
Eastern Grey Woodpecker	Dendropicos spodocephalus		RB	Х	Х
Common Sand Martin	Riparia riparia		NB		Х
Brown-throated Martin	Riparia paludicola		RB	Х	
Banded Martin	Riparia cincta		rb		Х
Red-rumped Swallow	Cecropis daurica		RB	Х	
Mosque Swallow	Cecropis senegalensis		RB	Х	
Lesser Striped Swallow	Cecropis abyssinica		RB	Х	Х
Barn Swallow	Hirundo rustica		NB	Х	Х
Wire-tailed Swallow	Hirundo smithii		RB	Х	Х
Black Saw-wing	Psalidoprocne pristoptera		RB	Х	Х
Yellow Wagtail	Motacilla flava		NB		Х
African Pied Wagtail	Motacilla aguimp		RB	Х	Х
Mountain Wagtail	Motacilla clara		RB	Х	Х
Grey Wagtail	Motacilla cinereal		NB		Х
Abyssinian Longclaw	Macronyx flavicollis	NT	RB/NT	Х	Х
Grassland Pipit	Anthus cinnamomeus		RB	Х	Х
Red-throated Pipit	Anthus cervinus		NB		Х
Black Cuckoo-shrike	Campephaga flava		rb	Х	
Red-shouldered Cuckoo-shrike	Campephaga phoenicea		RB	Х	
Grey Cuckoo-shrike	Coracina caesia		RB		Х
Common Bulbul	Pycnonotus barbatus schoanus		RB	Х	Х
Yellow-throated Leaflove	Chlorocichla flavicollis		RB	Х	
Rüppell's Robin-Chat	Cossypha semirufa		RB	Х	Х
Red-capped Robin-Chat	Cossypha natalensis		NB		Х
Snowy-headed Robin-Chat	Cossypha niveicapilla		RB		Х
African Stonechat	Saxicola torquatus		RB	Х	Х
Whinchat	Saxicola rubetra		NB		Х
Pied Wheatear	Oenanthe pleschanka		NB		Х
Abyssinian Ground Thrush	Zoothera piaggiae		RB		Х
Mountain Thrush	Turdus olivaceus		RB	Х	Х
African Thrush	Turdus pelios		RB		Х
Cinnamon Bracken Warbler	Bradypterus cinnamomaeus		RB	Х	Х
Little Bush Warbler	Bradypterus baboecola		RB	Х	
Dark-capped Yellow Warbler	Chloropeta natalensis		RB		Х
Willow Warbler	Phylloscopus trochilus		NB		Х
Common Chiffchaff	Phylloscopus collybita		NB		Х
Brown Woodland Warbler	Phylloscopus umbrovirens		RB	Х	Х
Blackcap	Sylvia atricapilla		NB		Х
Lesser Whitethroat	Sylvia curruca		NB		Х
Grey-backed Camaroptera	Camaroptera brachyura		RB	Х	Х

 $Abbrevations: RB - Resident \ breeder, \ rb - Mainly \ resident \ but \ partially \ migratory \ of \ or \ erratic \ or \ marginal \ occurance, \ MB - Breeding \ visitor \ (intra-African \ migrant), \ nb - Breeding \ visitor \ (sparse \ occurance), \ NB - Non-breeding \ visitors \ (Palearctic \ or \ intra-African \ migrant), \ nb - Non-breeding \ visitor \ (sparse \ occurance), \ visitor \ (sparse \ occurance), \ visitors \ (abc) \ visitors \ (abc) \ visitors \ (bb) \ visitors \ (bb) \ visitors \ vis$

Common name	Scientific name	IUCN Status	Status in Ethiopia	2019	2014
Green-backed Eremomela	Eremomela canescens		RB	Х	
Buff-bellied Warbler	Phyllolais pulchella		RB	Х	
Stout Cisticola	Cisticola robustus		RB	Х	Х
Croaking Cisticola	Cisticola natalensis		RB	Х	
Short-winged Cisticola	Cisticola brachypterus		RB	Х	
Ethiopian Cisticola	Cisticola lugubris		RB	Х	Х
Singing Cisticola	Cisticola cantans		RB	Х	Х
Red-faced Cisticola	Cisticola erythrops		RB	Х	
Tawny-flanked Prinia	Prinia subflava		RB	Х	Х
Yellow-breasted Apalis	Apalis flavida		RB	Х	
Abyssinian Slaty Flycatcher	Melaenornis chocolatinus		RB	Х	Х
Northern Black Flycatcher	Melaenornis edolioides		RB	Х	Х
Pale Flycatcher	Bradornis pallidus		RB	Х	
African Dusky Flycatcher	Muscicapa adusta		RB	Х	Х
African Paradise Flycatcher	Terpsiphone viridis		RB	Х	Х
Grey-headed Batis	Batis orientalis		RB	Х	
Black-headed Batis	Batis minor		RB	Х	Х
Brown-throated Wattle-eye	Platysteira cyanea		RB	Х	Х
White-rumped Babbler	Turdoides leucopygia omoensis		RB	Х	Х
White-winged Black Tit	Parus leucomelas		RB	Х	
Abyssinian Catbird	Parophasma galinieri		RB	Х	Х
Spotted Creeper	Salpornis spilonotus		RB	Х	
Montane White-eye	Zosterops poliogastrus		RB	Х	Х
Abyssinian White-eye	Zosterops abyssinicus		RB	Х	Х
Tacazze Sunbird	Nectarinia tacazze		RB	Х	Х
Copper Sunbird	Cinnyris cupreus		RB	Х	Х
Scarlet-chested Sunbird	Chalcomitra senegalensis		RB	Х	Х
Olive Sunbird	Cinnyris olivacea		RB	Х	Х
Variable Sunbird	Cinnyris venustus fazoqlensis		RB	Х	Х
Collared Sunbird	Hedydipna collaris		RB	Х	
Common Fiscal	Lanius collaris		RB	Х	Х
Grey-backed Fiscal	Lanius excubitorius		RB	Х	
Northern Puffback	Dryoscopus gambensis		RB	Х	Х
Ethiopian Boubou	Laniarius aethiopicus		RB	Х	Х
Marsh Tchagra	Tchagra minutus		RB	Х	
Black-crowned Tchagra	Tchagra senegalus		RB	Х	
Black-headed Oriole	Oriolus larvatus		RB	Х	
Abyssinian Oriole	Oriolus monacha		RB	Х	Х
Cape Crow	Corvus capensis		RB	Х	Х
Thick-billed Raven	Corvus crassirostris		RB	Х	Х

 $Abbrevations: RB - Resident \ breeder, rb - Mainly resident \ but partially migratory \ of \ or \ erratic \ or \ marginal \ occurance, MB - Breeding \ visitor \ (intra-African migrant), mb - Breeding \ visitor \ (sparse \ occurance), NB - Non-breeding \ visitor \ (Palearctic \ or \ intra-African \ migrant), mb - Non-breeding \ visitor \ (sparse \ occurance), visitor \ (sparse \ occurance), visitor \ (visitor) \ visitor) \ visitor \ (visitor) \ visitor \ (visitor) \ visitor \ (visitor) \ visitor) \ visitor \ visitor) \ visitor \ (visitor) \ visitor) \ visitor \ visitor) \ visitor)$

Common name	Scientific name	IUCN Status	Status in Ethiopia	2019	2014
Red-billed Oxpecker	Buphagus erythrorhynchus		RB	Х	Х
Stuhlmann's Starling	Poeoptera stuhlmanni		RB	Х	Х
Red-winged Starling	Onychognathus morio		RB	Х	Х
Slender-billed Starling	Onychognathus tenuirostris		RB	Х	Х
Greater Blue-eared Starling	Lamprotornis chalybaeus		RB	Х	Х
Splendid Starling	Lamprotornis splendidus		RB	Х	
Violet-backed Starling	Cinnyricinclus leucogaster		RB		Х
Sharpe's Starling	Pholia sharpii		RB	Х	Х
Swainson's Sparrow	Passer swainsonii		RB	Х	Х
Village Weaver	Ploceus cucullatus		RB	Х	Х
Vitelline Masked Weaver	Ploceus vitellinus		RB	Х	
Spectacled Weaver	Ploceus ocularis		RB	Х	Х
Compact Weaver	Ploceus superciliosus		RB	Х	
Baglafecht Weaver	Ploceus baglafecht		RB	Х	Х
Grosbeak Weaver	Amblyospiza albifrons		RB	Х	
Red-headed Quelea	Quelea erythrops		RB	Х	
Black Bishop	Euplectes gierowii		RB	Х	
Red-collared Widowbird	Euplectes ardens		RB	Х	Х
Fan-tailed Widowbird	Euplectes axillaris		RB	Х	Х
Yellow-mantled Widowbird	Euplectes macroura		RB	Х	
Red-cheeked Cordon-bleu	Uraeginthus bengalus		RB		Х
Red-billed Firefinch	Lagonosticta senegala		RB	Х	Х
Bar-breasted Firefinch	Lagonosticta rufopicta		RB	Х	
Yellow-bellied Waxbill	Coccopygia quartinia		RB	Х	Х
Common Waxbill	Estrilda astrild		RB	Х	Х
Crimson-rumped Waxbill	Estrilda rhodopyga		RB		Х
Bronze Mannikin	Lonchura cucullata		RB	Х	Х
Black-and-White Mannikin	Lonchura bicolor		RB	Х	Х
Pin-tailed Whydah	Vidua macroura		RB	Х	Х
Village Indigobird	Vidua chalybeata		RB	Х	Х
African Citril	Serinus citrinelloides		RB	Х	Х
Yellow-fronted Canary	Serinus mozambicus		RB	Х	Х
Yellow-rumped Seedeater	Serinus xanthopygius		RB	Х	
White-rumped Seedeater	Serinus leucopygius		RB		Х
Streaky Seedeater	Serinus striolatus		RB	Х	Х
Brown-rumped Seedeater	Seinus tristriatus		RB	Х	Х

Abbrevations: RB – Resident breeder, rb – Mainly resident but partially migratory of or erratic or marginal occurance, MB – Breeding visitor (intra-African migrant), mb – Breeding visitor(sparse occurance), NB – Non-breeding visitors (Palearctic or intra-African migrant), nb – Non-breeding visitor (sparse occurance)

Table 17: List of biome-restricted species

Common name	Scientific name	
Afrotropical Highland Biome		
Chestnut-naped Francolin	Francolinus castaneicollis	
Rouget's Rail	Rougetius rougetii	
Dusky Turtle Dove	Streptopelia lugens	
Yellow-fronted Parrot	Poicephalus flavifrons	
Black-winged Lovebird	Agapornis taranta	
White-cheeked Turaco	Tauraco leucotis	
Banded Barbet	Lybius undatus	
Abyssinian Longclaw	Macronyx flavicollis	
Rüppell's Robin-Chat	Cossypha semirufa	
Abyssinian Ground Thrush	Zoothera piaggiae	
Cinnamon Bracken Warbler	Bradypterus cinnamomeus	
Brown Woodland Warbler	Phylloscopus umbrovirens	
Abyssinian Slaty Flycatcher	Melaenornis chocolatinus	
Abyssinian Catbird	Parophasma galinieri	
Montane White-eye	Zosterops poliogastrus	
Tacazze Sunbird	Nectarinia tacazze	
Abyssinian Oriole	Oriolus monacha	
Thick-billed Raven	Corvus crassirostris	
Stuhlmann's Starling	Poeoptera stuhlmanni	
Slender-billed Starling	Onychognathus tenuirostris	
Sharpe's Starling	Pholia sharpii	
Swainson's Sparrow	Passer swainsonii	
Baglafecht Weaver	Ploceus baglafecht	
White-rumped Seedeater	Serinus leucopygius	
Brown-rumped Seedeater	Serinus tristriatus	
Streaky Seedeater	Serinus striolatus	
Somali-Masai Biome		
White-rumped Babbler	Turdoides leucopygia omoensis	
Abyssinian White-eye	Zosterops abyssinicus	

Table 18: List of endemic and near endemic birds

Common name	Scientific name	Endemism (Redman et al., 2019)
Wattled Ibis	Bostrychia carunculata	E*
Chestnut-naped Francolin	Francolinus castaneicollis	NE
Rouget's Rail	Rougetius rougetii	E*
Yellow-fronted Parrot	Poicephalus flavifrons	E
Black-winged Lovebird	Agapornis taranta	E*
White-cheeked Turaco	Tauraco leucotis	NE
Banded Barbet	Lybius undatus	E*
Abyssinian Woodpecker	Dendropicos abyssinicus	E*
Abyssinian Longclaw	Macronyx flavicollis	E
Ethiopian Cisticola	Cisticola lugubris	E*
Abyssinian Slaty Flycatcher	Melaenornis chocolatinus	E*
White-rumped Babbler	Turdoides leucopygia omoensis	NE
Abyssinian Catbird	Parophasma galinieri	E
Ethiopian Boubou	Laniarius aethiopicus	NE
Abyssinian Oriole	Oriolus monacha	E*
Thick-billed Raven	Corvus crassirostris	E*
Swainson's Sparrow	Passer swainsonii	NE
Yellow-rumped Seedeater	Serinus xanthopygius	E*
Brown-rumped Seedeater	Serinus tristriatus	NE

 $\rm E-endemic$ to Ethiopia, $\rm E^*-endemic$ to Ethiopia and Eritrea, $\rm NE-near$ endemic

7.2 Photos

Figure 2: The Abyssinian Longclaw (*Macronyx flavicollis*) is endemic to Ethiopia. Breeding pairs were found in the wetlands of Alemgono, Yartachi and Gojeb. (photo: Bernhard Walter)

Figure 3: The Abyssinian Slaty Flycatcher (*Melaenornis choco-latinus*) is endemic to Ethiopia and Eritrea. This highland species inhabits forests, forest edge and nearby farmland habitats. (photo: Bernhard Walter)

Figure 4: The Crowned Eagle (*Stephanoaetus coronatus*) is a typical species of extensive forest areas with old trees. The main prey of this powerful predator is monkeys, hyraxes and larger birds. (photo: Bernhard Walter)

Figure 5: The African Emerald Cuckoo (*Chrysococcyx cupreus*), well camouflaged between the green leaves. (photo: Bernhard Walter)

Figure 6: The Ethiopian subspecies of the African Goshawk (*Accipiter tachio unduliventer*) is now considered to be a full species called Ethiopian Goshawk (*Accipiter unduliventer*) (Clark & Davies 2018). (photo: Bernhard Walter)

Figure 7: The African Olive Pigeon (*Columba arquatrix*) is a species inhabiting the canopy of highland forest. (photo: Bernhard Walter)

Figure 8: The Blue-headed Coucal (*Centropus manachus*) is a common resident in marshy areas of the Kafa Biosphere Reserve. (photo: Bernhard Walter)

Figure 9: A large group of 58 individuals of the Black Crowned Crane (*Balearica pavonina*) was found in the Gojeb wetland, probably a place for the night roost. (photo: Bernhard Walter)

Figure 10: The Chestnut-naped Francolin (*Pternistis castanei-collis*), endemic to Ethiopia and NW-Somalia, inhabits forest clearings and forest edges. We found this species in Adiyo, Chefahanna, Gojeb, and Decha. (photo: Bernhard Walter)

Figure 11: The Cattle Egret (*Bubulcus ibis*) is a widespread and common species in Ethiopia. This species is rare at the Kafa Biosphere Reserve, possibly because of the lack of large lakes here. (photo: Bernhard Walter)

Figure 12: The Wattled Crane (*Bugeranus carunculatus*) is one of the rarest breeding birds of the Kafa Biosphere Reserve. Further investigations are needed to get more information on the number of breeding pairs and their breeding places within the reserve. (photo: Bernhard Walter)

Figure 13: The Copper Sunbird (*Cinnyris cupreus*) occurs in lightly wooded areas and the shrub layer on the edge of swampy areas. (photo: Bernhard Walter)

Figure 14: The Pin-tailed Whydah (*Vidua macroura*) is common in farmland with shrubs and a variety of bush country. (photo: Bernhard Walter)

Figure 15: We found flocks of the Fan-tailed Widowbird (*Euplectes axillaris*) in the wetlands of Alemgono, Shoriri, Gojeb and Decha. (photo: Bernhard Walter)

Figure 16: The Red-chested Cuckoo (*Cuculus solitaries*) was one of the most obvious species during this assessment because of its high calling activities ("it will rain"). (photo: Bernhard Walter)

Figure 17: We found the African Fish-Eagle (*Haliaeetus vocifer*) resting on a tree on the banks of the Gojeb River. (photo: Bernhard Walter)

Figure 18: The only observation of a pair of Spotted Creeper (*Salpornis spilonotus*) was made in the plot of the KDA Guesthouse. (photo: Bernhard Walter)

Figure 19: At the KDA Guesthouse many individuals of the Slender-billed Starling (*Onychognathus tenuirostris*) showed a yellow throat spot, probably caused by the pollen of tree blossoms (photo: Holger Meinig).

Figure 20: The Silvery-cheeked Hornbill (*Bycanistes brevis*) is found in the Kafa region in all forest sites with old trees. (photo: Bernhard Walter)

Figure 21: *Scopus umbretta* foraging in a shallow water pond at Gojeb Wetland (photo: Bernhard Walter)

Figure 22: "KD" Dijkstra gave us some good hints on the occurrence of bird species in certain areas. Thanks for that! (photo: Bernhard Walter)

Figure 23: A walk through the wonderful wetland of Chefahanna, with the assessment's bird team looking and listening for birds (photo: Bernhard Walter)

Figure 24: It was a rainy day when we went down to the hot springs (from left to right: Woldemariam Tesfahunegn, Kiros Welegerima Gerlass, Mohamed Abamscha, Nasir Ousiman) (photo: Bernhard Walter)

Figure 25: View from the way to the vulture colony near Adiyo (photo: Bernhard Walter)

Small- and medium-sized mammals of the Kafa Biosphere Reserve

Holger Meinig, Dr Meheretu Yonas, Ondřej Mikula, Mengistu Wale and Abiyu Tadele

Highlights

- \rightarrow Eight species of rodents and one species of Soricomorpha were found.
- → Five of the rodent species (*Tachyoryctes sp.3 sensu* (Sumbera et al., 2018)), *Lophuromys chrysopus* and *L. brunneus*, *Mus* (*Nannomys*) *mahomet* and *Desmomys harringtoni*) are Ethiopian endemics.
- → The Ethiopian White-footed Mouse (*Stenocephalemys albipes*) is nearly endemic; it also occurs in Eritrea.
- → Together with the Ethiopian Vlei Rat (*Otomys fortior*) and the African Marsh Rat (*Dasymys griseifrons*) that were collected only during the 2014 survey, seven endemic rodent species are known to occur in the Kafa region, which supports 12% of the known endemic species of the country.
- → The occurrence of the widespread Lesser Cane Rat (*Thryonomys gregorianus*) for the Kafa region was confirmed. For Ethiopia there are only very few records for this species.
- → The Gambian Epauletted Fruit Bat (*Epomophorus gambianus pousarguesi*) was found for the first time at the Kafa Biosphere Reserve.

1. Introduction

Ethiopia's geographical location, altitude range, rainfall patterns and soil variability have resulted in immense ecological diversity and a huge wealth of biological resources (Kassa & Bekele, 2008). Ethiopia is also notable for containing 50% of the Afrotropical region's land above 2,000 m a.s.l. (Yalden, 1983). This unique situation is due to repeated glaciations and tectonic events. In eastern Africa, rodents account for 28% of the total mammalian fauna (Kingdon, 1989). The insectivore fauna, particularly shrews, is also incredibly diverse, with 140 species (Hutterer & Yalden, 1990).

Ethiopia's fauna and flora include many species endemic to the country and there are probably also many species yet to be described. The real wealth of species in Ethiopia has not yet been fully assessed, due to a lack of studies in many regions. For example, the Kafa region in south-western Ethiopia has seen very few studies providing reliable data on small mammals (summarised in Berhan, 2008).

Most small mammal species are only rarely observed, but they play a crucial role in their ecosystems. They are the base of food chains for small- and medium-sized carnivores, as well as birds of prey such as raptors and owls. They are responsible, to a certain degree, for the dispersal of plant species through selective feeding, spreading of seeds and concentration of nutrients by using latrines. They also promote ventilation and bioturbation of soil and drainage after rainfall. On a more negative note, they are important vectors for diseases and can become pests in agriculture.

The diversity of small mammals depends on the habitat type (Glennon & Porter, 2007; Garratt et al., 2012), where habitats with higher floral diversity and ground cover support more diversity than those with lower floral diversity and ground cover (Mulungu et al., 2008; Pearson et al., 2001). Hence, the assessment of small mammals is an important component of broader assessments of ecosystem diversity because mammals are strong indicators of habitat conditions. The first assessment of small mammals at the Kafa BR was carried out during the dry season, between 3 December and 12 December 2014, in different types of habitats and altitudinal ranges. We expected different species compositions in different kinds of habitats (different types of forests, arable land, moister and drier stands). The short study period resulted in an incomplete species list for each sampling site, making comparisons with long-term studies of other small geographical areas (e.g., Habtamu & Bekele, 2008; Kassa & Bekele, 2008; Yonas et al., 2014) impossible.

The follow-up biodiversity assessment was carried out between 30 July and 13 August 2019 during the wet season. Again, different types of habitats were sampled, but predominantly forest stands were investigated.

Since the first assessment in 2014 (Meinig et al., 2017) a lot of systematic and taxonomic work concerning Ethiopian small mammals has been done, based mostly on genetic methods. Most prominent in this field are the working groups of Josef Bryja (Institute of Vertebrate Biology, Czech Academy of Sciences), Leonid Lavrenchenko (Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences), and Meheretu Yonas (Department of Biology and Institute of Mountain Research and Development, Mekelle University, Ethiopia). Many new insights concerning the borders of species that formerly were lumped into species complexes were gathered (e.g. Lavrenchenko & Bekele, 2017). In 1996, Yalden et al. counted 277 mammal species in Ethiopia. In 2017, 311 species were recognized (Lavrenchenko & Bekele, 2017), 57 of which are endemic (Lavrenchenko, 2019). These new findings also make it necessary to re-evaluate the findings of the first assessment in 2014 taxonomically.

2. Materials and methods

2.1 Study area

Systematic trapping was conducted in the Komba Forest near Wushwush, near Boginda (edge of primary forest), in the Masho Malo Forest, near Alemgono (forest patch, edge of cropland, and wetland), in the forest around God's Bridge near Bonga, in Shera village near Bonga (forest and private gardens) and in the area around the KDA Guesthouse in Bonga. Locals from near the village Gono (Ufdo Kebele) brought two animals of *Tachyoryctes*. In addition, members of other teams of the biodiversity assessment accidentally found animals which were also collected and observations were registered.

2.2 Sampling methods

Small mammals were sampled using mouse- and ratsized snap traps and Sherman LFA live traps (7.5 x 9.0 x 23.0 cm, H.B. Sherman Traps, Inc., Tallahassee, USA) baited with peanut butter mixed with canned fish. Sampling was performed in two to three lines per locality; in each line the three types of trap were set by alternating one after the other in lines up to 400 m long. A variety of traps was used following the suggestion that trap type and size can determine the types of small mammals captured (Thompson & Macauley, 1987; Slade et al., 1993; Lee, 1997). Each trapping line held 50-75 traps (depending upon the habitat condition), each five metres apart. Traps were set before dusk (between 5 and 6 pm) and inspected early in the morning (between 7 and 8 am) to prevent ant damage.

2.3 Data analysis

Before skinning, the standard external morphological measurements (body mass, head-body, tail, hind foot and ear lengths) were recorded for each specimen and the reproductive status of the animals determined (see Table 1). The carcasses were then preserved in alcohol for a later skin and skull/skeleton study. Spleen and kidney samples as well as other organs were taken and preserved in 96% ethanol for genetic analyses, and blood samples were collected on calibrated, prepunched filter paper (LDA 22, Ploufragan, France) for later serological and/or molecular screening for RNA viruses.

Following the national regulations of the Ethiopian Biodiversity Institute (EBI), samples were properly prepared and exported to Germany (Material Transfer Agreement from 9 August 2019), with the objective of further identifying the species and completing the species list. Sequences of the mitochondrial cytochrome b (CYTB) gene were obtained from a representative selection of the captured specimens in the laboratory of J. Bryja (Institute of Vertebrate Biology, Brno, Czech Republic).

To maximise the information gathered, skulls and skeletons will be cleaned using the larvae of dermestid beetles (Dermestidae) to prevent damage of delicate structures that might occur through using faster but rougher cleaning methods (procedure ongoing).

We were supported by Rainer Hutterer, the retired former head of the mammal collections at the Alexander Koenig Research Museum (Zoologisches Forschungsmuseum Alexander Koenig ZFMK), Bonn during the first steps of species determination, who also provided us with new and rare literature. Taxonomy follows Wilson et al. (2009-2018) and Bryja et al. (2019).

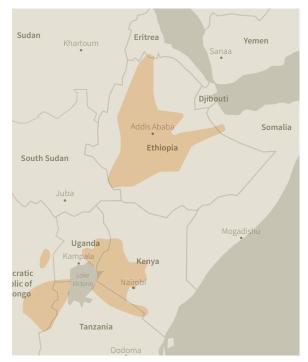
3. Results and discussion

The taxonomic status and ecological requirements of the species recorded during the survey in 2019 are described below.

3.1 Soricomorpha

African Giant Shrew (Crocidura olivieri)

Six individuals from a single shrew species were collected in Alemgono Wetland. No shrews were obtained at any other sampling site. The species is a dark brown colour morph of the widespread African Giant Shrew, which occurs in almost every part of sub-Saharan Africa and the Upper Nile Valley in Egypt, except in the very South of the continent. The species was formerly known as C. flavescens, a name now restricted to a smaller species occurring in South Africa (Churchfield & Hutterer, 2013). It is also possible that this shrew is the species described as C. fulvastra in the species list of the faunal diversity study of the Kafa Afromontane Coffee Forest by Berhan (2008). The population in the study area was previously described under the name of C. olivieri ssp. hansruppi by Hutterer (1980), who studied six individual animals from four different sites in the Kafa region, because of their long and densely haired tails and their unusual coloration compared to other samples of the species from Ethiopia. Jacquet et al. (2015) demonstrated the species' continent-wide distribution with a pronounced phylogeographic structure. The individuals captured in this survey belong to clade IV, which occurs from the Central African Republic to the Ethiopian Highlands. Although the known colour morphs do not represent subspecies or species (Churchfield & Hutterer, 2013), it is notable that one of the captured individuals is very black. One out of three females had active mammae (7 August 2019), two were pregnant (2/2 embryos, 2/1 embryos). The testes of the two male specimens were inactive.


3.2 Rodentia

East African Root Rat (Tachyoryctes splendens s.l.)

The taxonomy of this subterranean rodent is still not clear. Provisionally, 11 species from this complex (*Tachyoryctes*) confined to higher altitudes of East African montane grasslands have been recognised (e.g. Musser & Carleton, 2005), but 10 of them are sometimes lumped into *T. splendens* s.l., to the exclusion of the distinctive *T. macrocephalus* from the Bale mountains (e.g. Wilson et al., 2017). According to genetic and cytogenetic studies (Lavrenchenko et al., 2014; Šumbera et al., 2018), *T. splendens* s.l. contains four species in Ethiopia. Animals from the Kafa region most likely belong to *T. splendens* sp. 3 *sensu* (Šumbera et al., 2018), which occurs west of the Rift Valley and south and east of the Blue Nile. For animals from the Kafa region the name *Tachyoryctes pontifex* is probably the oldest one

Figure 1: Distribution of *C. olivieri* in Africa (Source: Kingdon et al., 2013)

Figure 2: Geographic range of *Tachyoryctes splendens* s.l. (Source: Kingdon et al., 2013)

available. The species was described in 1928 by Neumann & Rümmler (1928) based on material collected in 1901 near a village called Buka in the Kafa region. The species should be regarded as endemic to Ethiopia.

Subterranean mammal species occurring in grasslands are often endangered through intensification of agriculture, as was recently shown by Csorba et al. (2015) for a European species complex of Blind Mole Rats (genera Spalax and Nannospalax), a group closely related to Tachyoryctes of the Spalacidae family, with very similar ecological requirements. The replacement of extensive livestock farming and pasture farming with intensive monocultures will lead to the decline, fragmentation and, in many cases, complete eradication of grasslands. Root Rats, today sometimes regarded as a plague, will become endangered. The species feeds on grass and dicotyledonous plants (Yalden, 1975 for T. macrocephalus), so a decline in the richness of grassland plant species can also be assumed to harm Root Rat populations. As long as the species limits of the Tachyoryctes group remain provisional, and the geographical distribution and limits of the taxa are insufficiently investigated, it will be difficult to judge whether a form is endangered or not.

The species is persecuted by locals like a pest because it consumes root crops, particularly the staple Enset plant or False Banana (*Ensete ventricosum*), widely cultivated as a food plant in the area.

Two individuals (one male, one female) were caught by locals from Ufdo Kebele near Gono village when using snares (Figure 26) set in the species' running paths. *Tachyoryctes splendens* occasionally moves to the surface during the night in order to feed. The male had active testes (9.5 x 7 mm), the female is entirely black (melanistic).

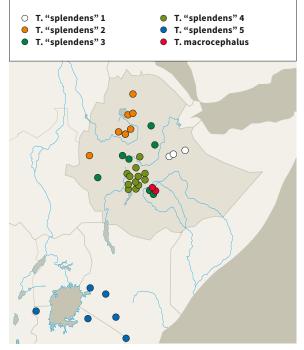
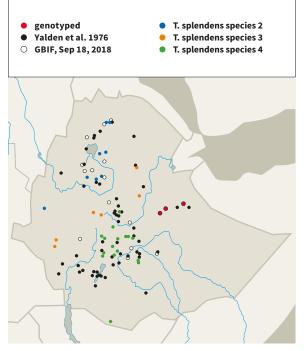



Figure 3: Occurrence of six lines (species) of *Tachyoryctes* in East Africa (Source: Šumbera et al., 2018)

Figure 4: Occurrence of four lines (species) of *Tachyoryctes splendens* s. l. in Ethiopia (Source: Bryja et al., 2019)

Brush-furred Mouse

(Lophuromys chrysopus and L. brunneus)

According to a study by Lavrenchenko et al. (2007), Lophuromys is the rodent genus with the maximum number of Ethiopian endemics: nine in total. Some of the species can be readily recognised on morphological grounds (e.g. L. brunneus and L. brevicaudus, see Figure 28), whereas in others diagnostic traits are not well established. Nevertheless, geographic distribution of the species bears clear signs of ecological differentiation. Some species are replacing each other as the vegetation changes on the mountain slopes. In other cases pairs of species commonly co-exist at the same sites, which also indicates niche differentiation (see Bryja et al., 2019). The specimens obtained during the first assessment therefore were regarded as Lophuromys flavopunctatus s. l. In the meantime a lot of genetical analyses have been done (see Bryja et al., 2019), so that the animals from the Kafa region can now be determined as members of the two Ethiopian endemics L. chrysopus and L. brunneus (Figure 29 and 30), whose co-existence is already known from some locations in south-western Ethiopia (Bryja et al., 2019).

Members of the species mostly feed on insects (ants are preferred). The specimens were caught in different localities: Komba Forest near Wushwush, near Boginda, Masho Malo Forest, forest near Alemgono, and near God's Bridge (Bonga).

Ethiopian Vlei Rat (Otomys fortior)

This species was not caught during the 2019 assessment; the three specimens existing were trapped during the 2014 assessment. The Vlei Rat is believed to be a species complex consisting at least of six species (Taylor et al., 2008). In Ethiopia, Vlei Rats are recorded in montane areas of the highlands (1,900 to 4,100 m a.s.l.) (Taylor et al., 2008). The species inhabit mesic grassland, montane grasslands and alpine heaths. They occur in grasslands and heaths of the highlands of Ethiopia, Kenya, Malawi, Tanzania and Uganda from 1,800 m a.s.l. upwards (Taylor et al., 2008). Habitats like these were not sampled during the 2019 assessment. The current determination of the three Otomys specimens collected near the Bamboo Forest camp (2) and in the Gojeb Wetland (1) in 2014 is based on DNA analysis. As had been supposed formerly (Meinig et al., 2017) the specimens represent the taxon Otomys fortior, a name used for specimens collected in the Charada Forest (in the Kafa region) and near Jimma (Taylor et al., 2011). The species is endemic to Ethiopia (see Bryja et al., 2019).

The species complex as a whole has been evaluated as Least Concern by the IUCN, although it is believed to be dwindling (Taylor et al., 2008). As there are several species subsumed under the name *0. typus*, species limits and the area that each species covers should be properly investigated to decide whether any species are more threatened than others and to develop strategies to protect endangered species.

Figure 5: Distribution of *Lophuromys flavopunctatus* (Source: IUCN Red List of Threatened Ethiopian Lophuromys Species 2014)

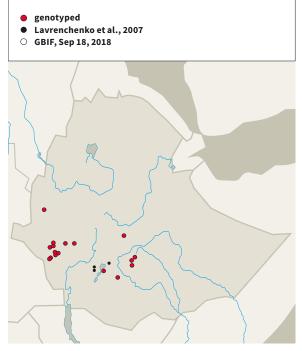
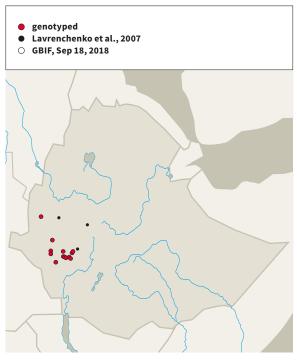



Figure 6: Distribution of *Lophuromys chrysopus* in Ethiopia (Source: Bryja et al., 2019)

Ethiopian white footed mouse

(Stenocephalemys albipes)

The genus *Stenocephalemys* is almost endemic to Ethiopia; the only species that also occurs outside Ethiopia (in neighbouring Eritrea) is *Stenocephalemys albipes* (Figure 10). There are currently six species recognised in this genus (Brya et al., 2019), which belongs to the Praomyini tribe with genus *Myomyscus brockmani* and *M. yemeni* as its closest relatives (Lecompte et al., 2008). *Stenocephalemys* *albipes* was the most abundant species in the study area. Of the 102 rodents, 70 were *S. albipes*. The species was caught at all sites except the area around the KDA Guesthouse in Bonga. Although able to colonise mosaic habitats, they are most typically associated with the forest stands, which could be seen in two of the Alemgono sites. At the forest patch site the species was very common, whereas at the wetland site with no continuous forest nearby, only a small number of individuals was captured.

Figure 7: Distribution of *Lophuromys brunneus* in Ethiopia (Source: Bryja et al., 2019)

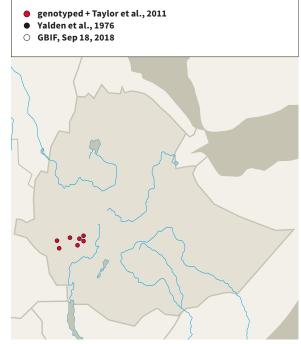


Figure 9: Occurrence of Otomys fortior (Source: Bryja et al., 2019)

Figure 8: Geographic range of *Otomys* cf. *typus* (Source: IUCN Red List of Threatened Species 2014)

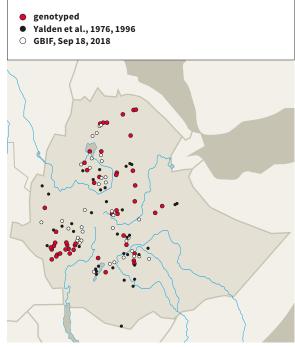


Figure 10: Geographic range of *Stenocephalemys albipes* in Ethiopia (Source: Bryja et al., 2019)

African Pygmy Mouse (Mus (Nannomys) mahomet)

Mice of the subgenus *Nannomys* are widespread throughout Africa. According to the recent study by Bryja et al. (2014), eight different forms of the subgenus occur in Ethiopia, six of which are endemic to the country. Among these is *Mus mahomet*, which is restricted to the Ethiopian Plateau and not conspecific with Pygmy Mice from Kenya and Uganda as previously supposed (e.g. Musser & Carleton, 2005). This study includes material from Bonga and Jimma (Figure 33); hence, the determination of the animals sampled during our assessment is supported by genetic data from the same area. 10 individuals were trapped during our assessment. The species occurs in grasslands and forest edges. *Mus mahommet* might be the species mentioned by Berhan (2008) under the name *M. triton*.

African Marsh Rat (Dasymys griseifrons)

This species was not caught during the 2019 assessment; the only specimen existing was trapped during the 2014 assessment. The genus Dasymys is widespread throughout sub-Saharan Africa and follows a savannah distribution (Mullin et al., 2005). Its natural habitats are moist savannah, seasonally wet or flooded lowland grassland and swamps. One individual of this species group, a subadult (M3 was just breaking through in both the lower and the upper jaw) female, was trapped in the Gojeb Wetland (11 December 2014). We were unable to identify the specimen morphologically in the field, even to the genus level, but preliminary DNA analysis indicated the specimen's identity. The animal has very dense, soft fur, a relatively long tail (longer than in Arvicanthis and shorter than in Stenocephalemys), very hairy ears and black sole markings (Figure 35).

Further confirmatory determination will follow using genetic analysis combined with a skull and tooth investigation. Mullin et al. (2005) reported that two chromosomal forms of *Dasymys* (*Dasymys* cf. *incomtus*: 2n = 40, NF = 44 from the Bale Mountains and 2n = 38, NF = 44 from the Harenna Forest) and one distinct morphological form (*D. griseifrons*, known only from Lake Tana and Jigga) occur in Ethiopia. According to the authors all of them differ distinctly from the nominate *incomtus* material from South Africa. The Ethiopian endemic *Dasymys griseifrons* (see Bryja et al., 2019) was lumped formerly in with *Dasymys* cf. *incomptus*.

Dasymys populations have been decreasing since the 1960s in southern Africa due to desiccation and destruction of wetlands (Mugo et al., 1995). Ethiopian populations are also likely to be sensitive to these factors.

Harrington's Scrub Rat (Desmomys harringtoni)

The genus *Desmomys* is endemic to Ethiopia and it consists only of two species. A single specimen (Figure 38)

Figure 11: Geographic range of the former *Dasymys* cf. *incomtus* (Source: IUCN Red List of Threatened Species 14)

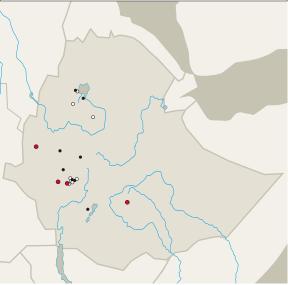
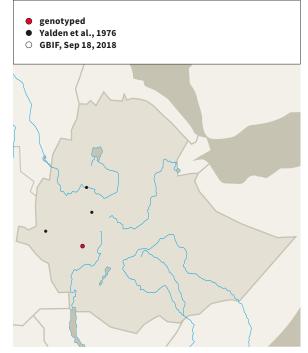
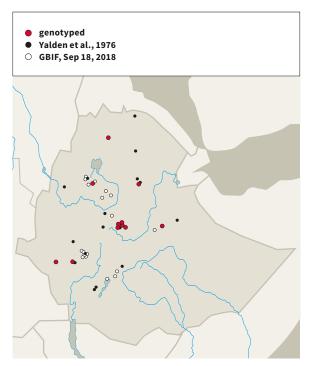



Figure 12: Occurrence of the Ethiopian endemic *Dasymys* griseifrons (Source: Bryja et al., 2019)


of the more frequent species D. harringtoni was caught 12 August 2019 near Shera village (Bonga) in a private garden in grassland (Figure 39). In western Ethiopia habitats of the species are described as marshes (Bekele, 1996). In the KDA Guesthouse a mouse, to all appearances D. harringtoni was observed several times by O. Mikula, H. Meinig and M. Yonas) on 13 August 2019 between 7 and 11 am crossing a small path. Structures were very similar (Figure 40) to those at the trapping site near Shera village. The mouse had not been observed before on that path even though it was used frequently by the observers. The observation could be related to three conditions: (i) the day before the grass was mown left and right of the path leaving the hedge plant of about 0.5 m, (ii) during the night before there was a heavy swarming of termites, and (iii) the night before there was constant rain between 10 pm and 8 am. These factors may have triggered the change in the animal's daily activity that led to the multiple observations. On the other hand, all the other animals caught on the same day as D. harringtoni (12 August 2019) in Shera village were wet and damaged (partly eaten) by ants. The single *D. harringtoni*, however, was dry and undamaged by ants, suggesting that the species is active during the day and less active during the hours of darkness.

Lesser Cane Rat (Thryonomys gregorianus)

The genus *Thryonomys* consists of two species. On 12 August 2019 the ornithological assessment group found a roadkill of a Cane Rat in the very east of the study area between Diri Goma (near Gojeb town) and Jimma. Based on body proportions, it was a Lesser Cane Rat (Figure 41), the only *Thryonomys* species genetically confirmed for Ethiopia to date (see Bryja et al., 2019). With the skull totally smashed and the carcass already decomposing, no part of the specimen was secured. Cane Rats are nocturnal, strictly herbivorous, feeding mainly on grass. *Thryonomys gregorianus* occupies moist savanna at higher altitudes (Wilson et al., 2017).

Figure 14: *Thryonomys gregorianus* occurrence in Ethiopia (Source: Bryja et al., 2019)

Figure 13: Occurrence of *Desmomys harringtoni* (Source: Bryja et al., 2019)

Figure 15: Occurrence of *Thryonomys gregorianus* in Africa. From Ethiopia there are only very few records (Source: Kingdon et al., 2013)

3.3 Records of mammal species other than Soricomorpha or Rodentia

Egyptian Fruit Bat (*Rousettus aegyptiacus leachi*) On 31 July 2019 a group of at least 50 Egyptian Fruit Bats was observed under God's Bridge near Bonga (Figure 42). The occurrence of a *Rousettus* species in this place had already been reported by Kaipf et al. (2017), but without any further determination. In contrast to the 2014 assessment in the same place no Microchiroptera were observed during the 2019 visit.

Gambian Epauletted Fruit Bat (Epomophorus gambianus pousarguesi) and another small Epauletted Fruit Bat (E. labiatus vel E. minimus)

During the visit to the Coffee Museum in Bonga on 10 August 2019, some 38 individuals of Epauletted Fruit Bats were observed under the roof of the Museum (counting K.-D. B. Dijkstra). On 12 August 2019 some 25 animals were observed again (own data H.M.). The majority of the animals could be determined as Gambian Epauletted Fruit Bats (E. gambianus pousarguesi) based on external body measurements. While the nominate form is a lowland species occurring below 500 m a.s.l., the current subspecies in Ethiopia may be found up to 2,000 m a.s.l. (van Cakenberghe 2019). One of the animals observed obviously was smaller and hanging a little bit further from a group of E. gambianus (Figure 43). This animal was either a Little Epauletted Fruit Bat (E. labiatus) or a Least Epauletted Fruit Bat (E. minimus). The two species cannot be distinguished without closer examination. This is probably the species mentioned by Berhan (2008) for the Kafa region under the name E. anurus that was synonymized under E. labiatus by Claessen & De Vree (1990).

Supplementary to Kaipf et al. 2017

On the basis of morphological measurements and comparison with voucher specimens in the Museum Koenig Bonn (det. Dr. R. Hutterer + H. M.) the two small Vespertilionid bats (field no. 3 + 4) caught around Bamboo Forest on 4 December 2014 and 5 December 2014 should be Dusk Pipistrelles (*Pipistrellus hesperidus*).

African Civet (Civettictis civetta)

A road kill of the African Civet found on 5 August 2019 near Wushwush. During the 2014 assessment two road kills and an individual that had been poached were also found. This widely distributed African carnivore species seems to be relatively abundant in the study area.

Figure 16: Distribution of *Rousettus aegyptiacus* in Africa (Source: Kingdon et al., 2013)

Figure 17: Geographic range of *Epomophorus gambianus* (Source: Kingdon et al., 2013)

Figure 18: Known geographic range of *Epomophorus labiatus* (Source: Kingdon et al., 2013)

Figure 20: Geographic range of *Pipistrellus hesperidus* (Source: Kingdon et al., 2013)

Figure 19: Known geographic range of *Epomophorus minimus* (Source: Kingdon et al., 2013)

Figure 21: Geographic range of *Civettictis civetta* (Source: Kingdon et al., 2013)

White-tailed Mongoose (Ichneumia albicauda)

In the quarry area of Shoriri the upper skull of a viverrid species was found on 10 August 2019. Morphological measurements and comparison with museum specimens at the Museum Koenig, Bonn revealed that the skull belonged to a White-tailed Mongoose, a widespread carnivore in sub-Saharan Africa.

Bushpig (Potamochoerus larvatus)

A group of Bushpigs was observed by the ornithological assessment group on 2 August 2019 at about 1.5 km west of the Bamboo Forest Camp. The species is widely distributed in eastern Africa, its occurrence in the study area was already known from previous studies (e.g. Berhan, 2008; Bauer, 2017).

Figure 22: Geographic range of *Ichneumia albicauda* (Source: Kingdon et al., 2013)

Figure 23: Geographic range of *Potamochoerus larvatus* (Source: Kingdon et al., 2013)

Possible intergradation with P. porcus

4. Evaluation of survey results

The most abundant species with 70 individuals was the Ethiopian White-footed Mouse (*Stenocephalemys albipes*), a typical species of forest stands. It usually occurs together with Brush-furred mice (*Lophuromys chrysopus* and *L. brunneus*) (19 individuals). In more open habitats with grassy patches the African Pygmy Mouse (*Mus* (*Nannomys*) *mahomet*) occurs frequently; we obtained 10 animals. Specimens of White-footed Mouse, Brush-furred Mouse, and African Pygmy Mouse were caught in most locations. This seems to be the regular species composition throughout the Kafa BR.

In open habitats single animals of Harringtons's Scrub Rat (*Desmomys harringtoni*) and Lesser Cane Rat (*Thryonomys gregorianus*) were found. Six African Giant Shrews (*Crocidura olivieri*) were caught around Alemgono in a wetland. Shrews prefer moister habitats because of the higher densities of insects as food, compared to drier habitats.

The list of species is shorter than expected. Long-term studies would likely have yielded more species (e.g. further shrew species, Multimammate Rats (*Mastomys*) or Zebra Mice (*Lemniscomys*)). Maybe future studies should concentrate to a higher degree on open habitats. A change in the trapping protocol could also be useful to enable more species to be found (e.g. four traps at each trapping place that are controlled every four hours between sunset and sundown).

5. Conclusions and recommendations for conservation and monitoring

This short-term study of small- and medium-sized mammals during the wet season yielded only a fraction of the results needed to fully understand the species composition of different habitat types. Future studies should concentrate on more open habitats and less on forest stands. In addition, another protocol for setting and controlling the traps may also be useful for increasing the number of species found.

Except on some very rare occasions (e.g. the Giant Root Rat (*Tachyoryctes macrocephalus*) in Bale National Park) small mammals are unsuited as flagship species, because they are rarely seen in normal conditions. In addition, many people consider rodents to be pests. However, they should be kept in mind during monitoring, as they play an important role in ecosystems. Small mammals are sensitive to overgrazing and pollution by insecticides and herbicides as well as to the intensification of agriculture in general. Where they vanish, many other species that depend on them as a food source will decline, or they will switch to other endangered species such as the Abyssinian Longclaw (*Macronyx flavicollis*) or Plovers (*Vanellus*) for food.

The endemic *Dasymys griseifrons* may be affected by the desiccation and destruction of wetlands, as well as by the pollution of streams and ponds by detergents and pesticides.

To overcome problems caused by intensified land use, regulations governing the extent and type of land use should be implemented and controlled in certain areas. Sewers should be constructed and maintained for villages in the wetlands and near streams to protect water-bound habitats from destruction by fertilizer, detergent, and pesticide pollution.

6. Acknowledgements

We would like to thank Dr Josef Bryja (Institute of Vertebrate Biology, Czech Academy of Sciences, Brno) for rapidly processing first DNA samples and Dr Rainer Hutterer (Alexander Koenig Research Museum, Bonn) for his help with species determination. Bernhard Walter (Borgholzhausen) provided photos and data concerning the observation of Bushpigs.

7. References

Bauer, H. (2017). Medium (esp. Carnivora and Artiodactyla) and large mammals at the Kafa Biosphere Reserve. In: The Nature and Biodiversity Conservation Union (NABU) (eds.): NABU's Biodiversity Assessment at the Kafa Biosphere Reserve, Berlin, Addis Ababa: 318-328 pp.

Bekele, A. (1996). Rodents of the Menagesha State Forest, Ethiopia, with an emphasis on the endemic *Praomys albipes* Rüppell 1842. Tropical Zoology 9: 201-212.

Berhan, L. A. (2008). Status and Distribution of Faunal Diversity in Kafa Afromontane Coffee Forest. Addis Ababa. 56 pp + annexes.

Bryja, J.; Mikula, O.; Šumbera, R.; Meheretu, Y.; Aghova, T.; Lavrenchenko, L. A.; Mazoch, V.; Oguge, N.; Mbau, J. S.; Welegerima, K.; Amundala, N.; Colyn, M.; Leirs, H. & Verheyen, E. (2014). Pan-African phylogeny of *Mus (subgenus Nannomys)* reveals one of the most successful mammal radiations in Africa. BMC Evolutionary Biology 14. 20 pp.

Bryja, J.; Meheretu, Y.; Šumbera, R. & Lavrenchenko, L. A. (2019). Annotated checklist, taxonomy and distribution of rodents in Ethiopia. Folia Zool. – 68 (3): 117-157.

Cakenberghe, V. van (2019). African Chiroptera Report 2019. AfricanBats NPC, Pretoria. i-xv + 8297 pp. doi: 10.13140/RG.2.2.27442.76482.

Churchfield, S. & Hutterer, R. (2013). *Crocidura olivieri* African Giant Shrew (Mann's musk shrew, Euchareena's musk shrew). In: Happold, M.; Happold, D. C. D. (eds.). Mammals of Africa, Volume IV: Hedgehogs, Shrews and Bats, Bloomsbury, London: 118-199.

Claessen, **C. J. & De Vree**, **F**. (1990). Systematic and taxonomic notes on the *Epomophorus anurus-labiatus-minor* complex with the description of a new species. Senckenbergiana Biologica 71: 209-238.

Csorba, G.; Krivek, G.; Sendula, T.; Homonnay, Z. G.; Hegyeli, Z.; Sugár, S.; Farkas, J.; Nikola Stojnić, N. & Németh, A. (2015). How can scientific researches change conservation priorities? A review of decade-long research on Blind Mole Rats (Rodentia: Spalacinae) in the Carpathian Basin. Therya 6. 103-121.

Garratt, C. G.; Minderman, J. & Whittingham, M.J. (2012). Should we stay or should we go now? What happens to small mammals when grass is mown, and the implications for birds of prey. Ann. Zool. Fenn. 49. 113-122. **Glennon, J. & Porter, F.** (2007). Impacts of Land-use Management on Small Mammals in the Adirondack Park, New York. Northeast Nat. 14. 323-342.

Habtamu, T. & Bekele, A. (2008). Habitat association of insectivores and rodents of Alatish National Park, Northwestern Ethiopia. Tropical Ecology 49. 1-11.

Happold, D.C.D. (ed.) (2013). Mammals of Africa. V. III: Rodents, Hares and Rabbits. Bloomsbury Publishing, London.

Hutterer, R. (1980). Zur Systematik und Verbreitung der Soricidae Äthiopiens (Mammalia; Insectivora). Bonner zool. Beitr. 31. Heft 3-4. 217-247.

Hutterer, R. & Yalden, D. W. (1990). Two new species of shrews from a relict forest in Bale Mountains, Ethiopia. In: Peters, G.; Hutterer, R. (eds.): Vertebrates in the Tropics – Proceedings of the International Symposium on Vertebrate Biogeography and Systematics in the Tropics. Mus. A. Koenig, Bonn. 63-72.

Jacquet, F.; Denys, C.; Verheyen, E.; Bryja, J.; Hutterer, R.; Kerbis Peterhans, J. C.; Stanley, W. T.; Goodman, S. M.; Couloux, A.; Colyn, M. & Nicolas, V. (2015). Phylogeography and evolutionary history of the *Crocidura olivieri* complex (Mammalia, Soricomorpha): from a forest origin to broad ecological expansion across Africa. BMC Evolutionary Biology 15, 71.

Kaipf, I.; Rudolphi, H. & Meinig, H. (2017). Bats and fruit bats at the Kafa Biosphere Reserve. In: The Nature and Biodiversity Conservation Union (NABU) (eds.) (2017). NABU's Biodiversity Assessment at the Kafa Biosphere Reserve, Berlin, Addis Ababa: 206-229 pp.

Kassa, D. & Bekele, A. (2008). Species composition, abundance, distribution and habitat association of rodents of Wondo Genet, Ethiopia. Ethiopian J. Science 31. 141-146.

Kingdon, J. (1990). Island Africa: The Evolution of Africa's Rare Animals and Plants. Academic Press, Princeton. 287.

Kingdon, J. (2001). The Kingdon Field Guide to African Mammals. Academic Press, San Diego. 476.

Kingdon, J.; Happold, D.; Hoffmann, M.; Butynski, T.; Happold, M. & Kalina, J. (ed.) (2013). Mammals of Africa. Bloomsbury London. **Lavrenchenko**, L. A. (2019). The mammals of Ethiopia: diversity, endemism and conservation. The 13th African Small Mammal Symposium, Mekelle, Ethiopia, September 16-21 2019, Programme and Abstract Book. 50-51.

Lavrenchenko, L. A. & Afework Bekele (2017). Diversity and conservation of Ethiopian mammals: What have we learned in 30 years? Ethiopian Journal of Biological Sciences, 16 (Supplementary): 20.

Lavrenchenko, L. A.; Mengistu, S.; Bulatova, N. S.; Bekele, A.; Potapov, S. G.; Nadjafova, R. S. & Belay, G. (2014). Genetic and cytogenetic variation of African root-rats *Tachyoryctes splendens* (Mammalia: Rodentia) from Ethiopia. Russ. J. Theriol. 13. 109-118.

Lavrenchenko, L. A.; Verheyen, W.N.; Verheyen, E.; Hulselmans, J. & Leirs, H. (2007). Morphometric and genetic study of Ethiopian *Lophuromys flavopunctatus* Thomas, 1888 species complex with description of three new 70-chromosomal species (Muridae, Rodentia). Bull. Inst. Roy. Sci. Nat. Belgique, Biologie 77: 77-117.

Lecompte, E.; Aplin, K.; Denys, C.; Catzeflis, F.; Chades, M. & Chevret, P. (2008). Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evolutionary Biology 8, 199.

Lee, L. L. (1997). Effectiveness of Live Traps and Snap Traps in Trapping Small Mammals in Kinmen. Taipei, Taiwan. Acta Zool. Taiw. 8, 79-85.

Maddalena T. (1990). Systematics and biogeography of Afrotropical and Palearctic shrews of the genus *Crocidura* (Insectivora: Soricidae): An electrophoretic approach. In: Peters, G.; Hutterer, R. (eds): Vertebrates in the tropics. Mus. A. Koenig, Bonn. 297-308.

Meheretu, Y.; Sluydts, V.; Welegerima, K.; Bauer, H.; Teferi, M.; Yirga, G.; Mulungu, L.; Haile, M.; Nyssen, J.; Deckers, J.; Makundi, R. & Leirs, H. (2014). Rodent abundance, stone bund density and its effects on crop damage in the Tigray highlands, Ethiopia. Crop Protection 55. 61-67.

Meinig, H.; Meheretu, Y. & Hermes, N. (2017). Smalland medium-sized mammals (Soricomorpha, Lagomorpha, Rodentia, Procavidae) at the Kafa Biosphere Reserve. In: The Nature and Biodiversity Conservation Union (NABU) (eds.) (2017). NABU's Biodiversity Assessment at the Kafa Biosphere Reserve. Berlin, Addis Ababa. Berlin, Addis Ababa: 296-317 pp. Mugo, D. N.; Lombard, A. T.; Bronner, G. N.; Gelderblom, C. M. & Benn, G.A. (1995). Distribution and protection of endemic or threatened rodents, lagomorphs and macrosceledids in South Africa. South African J. of Zoology 30. 115-126.

Mullin, S. K.; Pillay, N. & Taylor, P. J. (2005). The distribution of the water rat *Dasymys* (Muridae) in Africa: a review. South African J. of Science 101. 117-124.

Mulungu, L.S.; Makundi, R.H.; Massawe, A.W.; Machang'u, R.S. & Mbije, N.E. (2008). Diversity and distribution of rodent and shrew species associated with variations in altitude on Mount Kilimanjaro, Tanzania. J Mammal 72: 178-185.

Musser, G. G. & Carleton, M. D. (2005). Superfamily Muroidea. In: Wilson, D. E.; Reeder, D. M. (eds.) 2005. Mammal Species of the World: A Taxonomic and Geographic Reference.- 3rd Edition, The Johns Hopkins University Press, Baltimore. 894-1531.

Neumann, O. & Rümmler, H-J. (1928). Beiträge zur Kenntnis von *Tachyoryctes* Rüpp. Z. Säugetierkunde 3: 295-30.

Pearson, D.E; Ortega, Y.K.; McKelvey, K.S. & Ruggiero, L.F. (2001). Small Mammal Communities and Habitat Selection in Northern Rocky Mountain Bunchgrass: Implications or Exotic Plant Invasions. Northwest Sci. 75: 107-117.

Slade, N.A; Eifler, M.A.; Gruenhagen, N.M. & Davelos, A.L. (1993). Differential Effectiveness of Standard and Long Sherman Livetraps in Capturing Small Mammals. J. of Mamm. 74, 156-161.

Šumbera, R.; Krásová, J.; Lavrenchenko, L. A.; Mengistu, S.; Bekele, A.; Mikula, O. & Bryja, J. (2018). Ethiopian highlands as a cradle of the African fossorial root-rats (genus *Tachyoryctes*), the genetic evidence. Molecular Phylogenetics and Evolution 126: 105-115 pp.

Taylor, P. J.; Lavrenchenko L. A.; Carleton M. D.; Verheyen, E.; Nigel, C. Bennett, N. C.; Oosthuizen, C. J. & Maree, S. (2011). Specific Limits and Emerging Diversity Patterns in East African Populations of Laminate-Toothed Rats, Genus *Otomys* (Muridae: Murinae: Otomyini): Revision of the *Otomys typus* Complex. Zootaxa 3024. 66 pp. Taylor, P.J.; Maree, S.; Lavrenchenko, L. A.; Kerbis Peterhans, J. & Chitaukali, W. (2008). *Otomys typus*. The IUCN Red List of Threatened Species. Version 2014.3. www.iucnredlist.org. Downloaded on 13/02/2015.

Thompson, I.D. & Macaulay, A.L. (1987). Comparative Efficiency of New and Old Style Museum Special Traps in Capturing Small Mammals. Can. Field Nat. 101, 608-610.

Wilson, D. E. & Reeder, D. M. (eds.) (2005). Mammal Species of the World: A Taxonomic and Geographic Reference (Smithsonian Series in Comparative Evolutionary Biology).- 3rd Edition, The Johns Hopkins University Press, Baltimore. 2142 pp.

Wilson D.E.; Lacher T.E. Jr. & Mittermeier R.A. (2017). Handbook of the Mammals of the World, Vol. 7. Rodents II. Lynx Edicions, Barcelona.

Yalden, D. W. (1975). Some Observations on the Giant Mole Rat *Tachyoryctes macrocephalus* (Rüppell, 1842) (Mammalia Rhizomyidae) of Ethiopia. Monitore Zoologico Italiano. Supplemento, Volume 6. 275-303.

Yalden, D. W. (1983). The extent of high ground in Ethiopia as compared to the rest of Africa. Ethiopian J. Science 6. 35-38.

Yalden D.W., Largen M.J., Kock D. & Hillman J.C. (1996). Catalogue of the mammals of Ethiopia and Eritrea. Revised checklist, zoogeography and conservation. Trop. Zool. 9. 73-164.

8. Annex

8.1 Tables

Table 1: List of small- and medium-sized mammal species recorded during the follow-up assessment at the Kafa BR

9	Scientific name	Barcoded	Date capture	Locality	Latitude	Longitude	Altitude (a.s.l.)	HB	ц	H	EL	Sex
ETH2181	Stenocephale- mys albipes		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	137.0	152.0	26.0	22.0	М
ETH2182	Stenocephale- mys albipes		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	-	-	27.0	24.0	F
ETH2183	Stenocephale- mys albipes		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	122.0	157.0	28.0	22.0	М
ETH2184	Stenocephale- mys albipes		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	128.0	164.0	27.0	22.5	М
ETH2185	Stenocephale- mys albipes		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	124.0	163.0	26.5	20.0	F
ETH2186	Stenocephale- mys albipes		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	127.0	167.0	27.0	23.0	F
ETH2187	Stenocephale- mys albipes		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	107.0	119.0	26.0	21.5	М
ETH2188	Lophuromys chrysopus		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	142.0	53.0	23.0	19.0	F
ETH2189	Lophuromys brunneus		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	-	-	21.0	17.0	F
ETH2190	Stenocephale- mys albipes	yes	31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	117.0	172.0	29.0	21.5	М
ETH2191	Stenocephale- mys albipes	yes	31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	100.0	144.0	25.0	19.0	F
ETH2192	Stenocephale- mys albipes	yes	31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	124.0	170.5	28.0	24.5	F
ETH2193	Stenocephale- mys albipes	yes	31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	129.0	173.0	30.0	19.0	М
ETH2194	Mus mahomet	yes	31/07/2019	Boginda Forest	7.5511	36.0621	1,524 m	72.0	59.0	16.0	11.5	F
ETH2195	Mus mahomet		02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m		55.0	15.5		М
ETH2196	Mus mahomet		02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	73.0	51.0	14.5	11.0	М
ETH2197	Mus mahomet		02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	•	53.0	15.0	11.5	•
ETH2198	Mus mahomet		02/08/2019	Boginda	7.5511	36.0621	1,524 m	74.0	56.0	15.0	-	F
ETH2189	Lophuromys brunneus		31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	-	-	21.0	17.0	F
ETH2190	Stenocephale- mys albipes	yes	31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	117.0	172.0	29.0	21.5	М
ETH2191	Stenocephale- mys albipes	yes	31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	100.0	144.0	25.0	19.0	F
ETH2192	Stenocephale- mys albipes	yes	31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	124.0	170.5	28.0	24.5	F

M – male, F – female, HB – head and body, TL – tail, HF – hind foot, EL – ear length. All measurements in millimetres. Field-IDs are those of the collection of Ethiopian mammals at the Institute of Vertebrate Biology, Brno.

₽	Scientific name	Barcoded	Date capture	Locality	Latitude	Longitude	Altitude (a.s.l.)	HB	Ĩ	HF	EL	Sex
ETH2193	Stenocephale- mys albipes	yes	31/07/2019	Komba Forest	7.3085	36.0869	1,990 m	129.0	173.0	30.0	19.0	М
ETH2194	Mus mahomet	yes	31/07/2019	Boginda Forest	7.5511	36.0621	1,524 m	72.0	59.0	16.0	11.5	F
ETH2195	Mus mahomet		02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	-	55.0	15.5	-	м
ETH2196	Mus mahomet		02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	73.0	51.0	14.5	11.0	М
ETH2197	Mus mahomet		02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	-	53.0	15.0	11.5	-
ETH2198	Mus mahomet		02/08/2019	Boginda	7.5511	36.0621	1,524 m	74.0	56.0	15.0	-	F
ETH2199	Lophuromys brunneus	yes	02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	114.0	59.0	22.0	16.0	F
ETH2200	Stenocephale- mys albipes	yes	02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	115.0	168.0	28.0	21.0	F
ETH2201	Stenocephale- mys albipes		02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	123.0	168.0	27.0	20.5	М
ETH2202	Stenocephale- mys albipes		02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	105.0	162.0	27.5	20.5	F
ETH2203	Stenocephale- mys albipes		02/08/2019	Boginda Forest	7.5511	36.0621	1,524 m	127.0	165.0	27.0	22.0	F
ETH2204	Lophuromys chrysopus		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	89.0	73.0	20.5	16.5	М
ETH2205	Lophuromys chrysopus	yes	03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	134.0	94.0	22.5	19.0	М
ETH2206	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	112.0	138.0	26.0	21.0	F
ETH2207	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	140.0	-	29.0	22.0	М
ETH2208	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	118.0	174.0	25.5	23.0	F
ETH2209	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	126.0	168.0	27.0	21.0	М
ETH2210	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	124.0	155.0	26.5	21.0	М
ETH2211	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	132.0	175.0	28.0	23.0	М
ETH2212	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	125.0	154.0	28.0	23.0	F
ETH2213	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	121.0	156.0	27.5	22.0	F
ETH2214	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	76.0	102.0	21.0	18.0	М
ETH2215	Lophuromys chrysopus		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	109.0	77.0	21.0	17.0	F
ETH2216	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	126.0	161.0	25.0	21.0	F
ETH2217	Stenocephale- mys		03/08/2019	Masha Malo	7.6916	35.9850	1,730 m	109.0	-	25.0	22.0	F

M – male, F – female, HB – head and body, TL – tail, HF – hind foot, EL – ear length. All measurements in millimetres. Field-IDs are those of the collection of Ethiopian mammals at the Institute of Vertebrate Biology, Brno.

9	Scientific name	Barcoded	Date capture	Locality	Latitude	Longitude	Altitude (a.s.l.)	Ħ	Ę	Ħ	EL	Sex
ETH2218	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	111.0	145.0	27.0	19.0	F
ETH2219	Stenocephale- mys albipes	yes	03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	124.0	158.0	26.0	22.0	F
ETH2220	Lophuromys chrysopus	yes	03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	111.0	82.0	21.0	15.0	М
ETH2221	Lophuromys chrysopus	yes	03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	111.0	80.0	21.0	18.0	М
ETH2222	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	95.0	131.0	23.5	21.0	М
ETH2223	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	88.5	115.5	24.0	18.5	М
ETH2224	Stenocephale- mys albipes		03/08/2019	Masha Malo Forest	7.6916	35.9850	1,730 m	119.5	167.5	27.0	22.0	F
ETH2225	Mus mahomet	yes	05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	81.0	51.0	14.5	12.0	М
ETH2226	Lophuromys brunneus	yes	05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	139.0	76.0	26.0	18.0	F
ETH2227	Lophuromys chrysopus		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	-	-	23.0	15.5	F
ETH2228	Lophuromys chrysopus		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	107.0	69.0	24.0	17.0	М
ETH2229	Lophuromys chrysopus	yes	05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	113.0	80.0	23.0	17.5	F
ETH2230	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	143.0	158.0	27.0	22.0	М
ETH2231	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	137.0	189.0	28.0	20.5	М
ETH2232	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	150.0	178.0	29.0	24.5	М
ETH2233	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	140.0	173.0	24.5	22.5	F
ETH2234	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	137.0	186.0	28.0	23.0	М
ETH2235	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	132.0	166.0	27.0	22.0	F
ETH2236	Stenocephale- mys		05/08/2019	Alemgono	7.3586	36.2130	1,707 m	126.0	164.0	27.5	23.5	М
ETH2237	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	142,0	169.0	27.0	23.0	М
ETH2238	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	144.0	166.0	28.0	23.5	М
ETH2239	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	142.0	182.0	28.5	24.0	F
ETH2240	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	119.0	162.0	27.0	22.0	М
ETH2241	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	96.0	107.0	24.5	18.5	М

M-male, F-female, HB-head and body, TL-tail, HF-hind foot, EL-ear length. All measurements in millimetres.

Field-IDs are those of the collection of Ethiopian mammals at the Institute of Vertebrate Biology, Brno.

₽	Scientific name	Barcoded	Date capture	Locality	Latitude	Longitude	Altitude (a.s.l.)	BH	Ę	HF	EL	Sex
ETH2242	Mus mahomet	yes	05/08/2019	Alemgono village	7.3633	36.2239	1,716 m	-	45.0	14.0	-	М
ETH2243	Lophuromys brunneus	yes	05/08/2019	Alemgono village	7.3633	36.2239	1,716 m	145.0	75.0	23.0	18.0	F
ETH2244	Civettictis civetta		05/08/2019	Wushwush	7.3090	36.1197	-	-	-	-	-	F
ETH2245	Crocidura olivieri		05/08/2019	Alemgono village	7.3633	36.2239	1,716 m	120.0	86.0	20.0	11.5	F
ETH2246	Crocidura olivieri		05/08/2019	Alemgono village	7.3633	36.2239	1,716 m	108.5	86.5	21.0	11.5	М
ETH2247	Stenocephale- mys albipes	yes	05/08/2019	Alemgono village	7.3633	36.2239	1,716 m	126.0	147.0	26.0	21.0	М
ETH2248	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	140.0	161.0	27.0	23.0	М
ETH2249	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	133.5	174.5	27.0	23.0	F
ETH2250	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	120.0	160.0	28.0	21.0	F
ETH2251	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	116.0	185.0	28.0	23.5	F
ETH2252	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	97.5	122,2	26.0	21.0	М
ETH2253	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	148.0	180.0	29.0	24.0	М
ETH2254	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	134.0	177.0	29.0	21.5	F
ETH2255	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	143.0	178.0	29.0	21.0	М
ETH2256	Mus mahomet	yes	05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	79.0	51.0	15.5	13.5	F
ETH2257	Crocidura olivieri	yes	05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	112.0	85.0	20.5	11.0	М
ETH2258	Lophuromys chrysopus	yes	05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	118.0	74.0	21.0	17.5	F
ETH2259	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	139.0	183.0	28.0	23.5	М
ETH2260	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	88.0	126.0	25.5	21.0	F
ETH2261	Lophuromys chrysopus		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	137.0	-	24.0	18.5	F
ETH2262	Lophuromys chrysopus	yes	05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	116.5	78.0	20.0	16.0	F
ETH2263	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	112.0	174.0	26.0	23.0	F
ETH2264	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	116.0	-	26.0	20.5	F
ETH2265	Lophuromys	yes	05/08/2019	Alemgono Alemgono	7.3586	36.2130	1,707 m	117.0	78.0	21.0	18.0	F
ETH2266	Lophuromys brunneus	yes	05/08/2019	village	7.3586	36.2130	1,707 m	130.0	68.0	22.5	17.5	F

M – male, F – female, HB – head and body, TL – tail, HF – hind foot, EL – ear length. All measurements in millimetres. Field-IDs are those of the collection of Ethiopian mammals at the Institute of Vertebrate Biology, Brno.

9	Scientific name	Barcoded	Date capture	Locality	Latitude	Longitude	Altitude (a.s.l.)	뛰	۲.	H	EL	Sex
ETH2267	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	118.5	162.5	28.5	22.0	М
ETH2268	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	127.0	187.0	28.0	23.0	F
ETH2269	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	122.0	187.0	28.5	23.5	F
ETH2270	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	119.0	167.0	29.0	22.0	М
ETH2271	Stenocephale- mys albipes		05/08/2019	Alemgono village	7.3586	36.2130	1,707 m	104.0	119.0	26.0	19.0	М
ETH2272	Crocidura olivieri		07/08/2019	Alemgono village	7.3633	36.2239	1,716 m	124.5	74.5	19.0	10.0	F
ETH2273	Crocidura olivieri	yes	07/08/2019	Alemgono village	7.3633	36.2239	1,716 m	110.0	81.0	19.0	10.5	F
ETH2274	Crocidura olivieri	yes	07/08/2019	Alemgono village	7.3633	36.2239	1,716 m	129.5	87.5	20.0	12.5	М
ETH2275	Stenocephale- mys albipes		07/08/2019	Alemgono village	7.3633	36.2239	1,716 m	127.5	164.0	26.0	23.5	F
ETH2276	Stenocephale- mys albipes		07/08/2019	Alemgono village	7.3633	36.2239	1,716 m	149.0	164.0	26.5	22.0	М
ETH2277	Stenocephale- mys albipes		07/08/2019	Alemgono village	7.3633	36.2239	1,716 m	154.0	182.0	29.0	25.0	М
ETH2278	Mus mahomet	yes	07/08/2019	Bonga, KDA Guest- house	7.2501	36.2546	1,756 m	-	53.0	14.0	11.0	F
ETH2279	Mus mahomet	yes	11/08/2019	God's Bridge	7.3636	36.2122	1,562 m	73.5	49.0	14.0	12.0	F
ETH2280	Lophuromys chrysopus	yes	11/08/2019	God's Bridge	7.3636	36.2122	1,562 m	-	8.,0	23.0	20.0	М
ETH2281	Stenocephale- mys albipes		11/08/2019	God's Bridge	7.3636	36.2122	1,562 m	131.0	175.0	28.0	21.5	М
ETH2282	Stenocephale- mys albipes		11/08/2019	God's Bridge	7.3636	36.2122	1,562 m	105.0	127.0	25.5	21.5	F
ETH2283	Stenocephale- mys albipes	yes	11/08/2019	God's Bridge	7.3636	36.2122	1,562 m	130.5	172.0	27.0	22.5	F
ETH2284	Tachyoryctes splendens		11/08/2019	Ufdo area, Gono village	7.3634	36.2184	1,729m	230.0	67.0	34.0	15.0	F
ETH2285	Tachyoryctes splendens		12/08/2019	Ufdo area, Gono village	7.3634	36.2184	1,729 m	253.0	62.0	32.0	18.0	М
ETH2286	Desmomys harringtoni		12/08/2019	Shera village	7.2779	36.1835	1,840 m	119.5	120.5	27.0	17.5	F
ETH2287	Stenocephale- mys albipes		12/08/2019	Shera village	7.2779	36.1835	1,840 m	_	-	-	-	-
ETH2288	Stenocephale- mys albipes		12/08/2019	Shera village	7.2779	36.1835	1,840 m	122.5	153.5	28.5	-	F
ETH2289	Stenocephale- mys albipes	yes	12/08/2019	Shera village	7.2779	36.1835	1,840 m	146.0	190.0	28.0	25.5	F

M – male, F – female, HB – head and body, TL – tail, HF – hind foot, EL – ear length. All measurements in millimetres. Field-IDs are those of the collection of Ethiopian mammals at the Institute of Vertebrate Biology, Brno.

8.2 Photos

Figure 24: Specimens of male *C. olivieri* from Ethiopia (left: Gojeb Wetland, 11/12/2014, right: the more widespread savannah colour morph from Bahir Dar, Lake Tana, 07/04/2011) (photo: Holger Meinig)

Figure 25: *Tachyoryctes splendens* s.l. from the Bamboo Forest, 06/12/2014 (photo: Holger Meinig)

Figure 26: Snare for catching *Tachyoryctes*, Bamboo camp, 06/12/2014 (photo: Holger Meinig)

Figure 27: A melanistic and a normally coloured specimen of *Tachyoryctes splendens* s. l. from Ufdo Kebele near Gono village, 11/08/2019 (photo: Holger Meinig)

Figure 28: Comparison of body proportions of Ethiopian *Lophuromys*. Left: female *L. brunneus* from Bamboo Camp, 06/12/2014, right: male *L. brevicaudus* from Wahoro village, Bale Mts., 04/04/2010 (photo: Holger Meinig)

Figure 29: Specimens of *Lophuromys chrysops* (left) and *L. brunneus* (right) from Komba Forest, dorsal view (photo: Holger Meinig)

Figure 30: Specimens of *Lophuromys chrysops* (left) and *L. brunneus* (right) from Komba Forest, ventral view (photo: Holger Meinig)

Figure 31: *Otomys helleri* (formerly *O. cf. typus*) (Source: the Sanetti Plateau, Bale Mts. 14/04/2010) (photo: Holger Meinig)

Figure 32: *Stenocephalemys albipes* from the Bale Mts. near Dodola, 09/04/2010 (photo: Holger Meinig)

Figure 33: *Mus mahomet* from the Bamboo Forest Camp, 05/12/2014 (photo: Holger Meinig)

MOTU 11 (mahomet)

Figure 34: Section of samples identified as *M. mahomet* from the phylogeny of the Nannomys group by Bryja et al. (2014), among others, presenting material from the study area (Bonga, Jimma)

Figure 35: *Dasymys griseifrons* from the Gojeb Wetland, 11/12/2014 (photo: Holger Meinig)

Figure 36: Body proportions of *Stenocephalemys albipes* (above) and *Dasymys griseifrons* (below) (photo: Holger Meinig)

Figure 37: Characteristic black sole markings of *Dasymys griseifrons* from the Gojeb Wetland, 11/12/2014 (photo: Holger Meinig)

Figure 38: *Desmomys harringtoni* from Shera village, 12/08/2019 (photo: Holger Meinig)

Figure 39: Trapping site of *Desmomys harringtoni* near Shera village, 12/08/2019 (photo: Meheretu Yonas)

Figure 40: The small path at the KDA Guesthouse in Bonga that was crossed several times by a mouse, to all appearances *D. harringtoni* (photo: Holger Meinig)

Figure 41: Records of *Thryonomys gregorianus* from between Diri Goma and Jimma, 12/08/2019 (photo: Holger Meinig)

Figure 42: Rousettus aegyptiacus leachi under God's Bridge near Bonga (photo: Holger Meinig)

Figure 43: Group of seven *Epomophorus gambianus pousarguesi* (2 males and 5 females under the roof of the Coffee Museum in Bonga and a member of a smaller *Epomophorus* species (*E. labiatus* or *E. minimus*), bottom left side, 12/08/2019 (photo: Holger Meinig)

Figure 44: Road kill of *Civettictis civetta* from near Wushwush (photo: Holger Meinig)

Figure 45: Skull of *Ichneumia albicauda* from Shoriri (lateral view) (photo: Holger Meinig)

Figure 46: Skull of *Ichneumia albicauda* from Shoriri (dorsal view) (photo: Holger Meinig)

Figure 47: *Potamochoerus larvatus* with young near the former Bamboo Forest Camp (photo: Bernhard Walter)

Participants of the follow-up biodiversity assessement after a theoretical training at NABU's Project Office Bonga (photo: NABU/Abdurazak Sahile)

Members/staff of the Ethiopian Biodiversity Institute, the Bonga University, the Office of Environment, Forest and Climate Change Control and NABU after an interim feedback session at the KDA Guesthouse (photo: NABU/Abdurazak Sahile)

The arrival of experts and NABU staff at Jimma Airport (photo: NABU)

NABU, The Nature and Biodiversity Conservation Union, hosted a second biodiversity assessment at the Kafa Biosphere Reserve as follow-up to a first one held in 2014. A team of nine international experts from the Czech Republic, Germany, Kenya and the Netherlands, 16 Ethiopian experts from partnering institutions and science as well as 10 NABU rangers and nine NABU team members conducted intensive field work on amphibians, birds, dragonflies and damselflies, fungi, small and medium-sized mammals and reptiles.

The Kafa Biosphere Reserve in south-west Ethiopia (Southern Nations, Nationalities and Peoples' Region) combines a distinctive richness of culture and biodiversity, which is unique among paleotropical regions. Up to 2014, however, the immense local biodiversity had not been professionally assessed and documented. This changed with NABU's first biodiversity assessment in 2014 where 12 taxa were assessed for the first time. With a second and follow-up assessment in the rainy season of 2019, NABU aimed to obtain comparable and new data on the status of biodiversity for specific taxonomic groups.

This book is a major step forward in significantly expanding existing knowledge on species and their habitats at the Kafa Biosphere Reserve. Particularly outstanding is the record of 31 species which are new to science (mainly fungi and one amphibian species) and 276 species which are new to Ethiopia. In total, 515 species have been recorded of which at least 29 species are endemic.

NABU, The Nature and Biodiversity Conservation Union, has promoted the interests of people and nature for more than 120 years drawing on its unwavering commitment, specialised expertise and the backing of its 770,000 members and supporters. The NGO is the largest of its kind in Germany. NABU has been working towards the protection of Kafa's unique environment with national and international partners and support from the German government since 2006. NABU aims to ensure the conservation and restoration of the Afromontane cloud forests and wetlands to preserve ecosystem resilience and unique biodiversity, reduce CO_2 emissions and sustain ecosystem services for local communities.

The assessment was part of NABU's project 'Community Action for Biodiversity and Forest Conservation and Adaptation to Climate Change in the Wild Coffee Forests (CAFA)' supported by the German Federal Ministry for Economic Cooperation and Development (BMZ).

NABU e.V. Charitéstraße 3 10117 Berlin Germany Africaprogramme@NABU.de www.en.nabu.de NABU Ethiopia Trade Path International P.L.C. Urael Street, Woreda 17/18 P.O. Box 62483 Addis Ababa Ethiopia

